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AI Application in Finance
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Gu, Kelly, and Xiu (2020): Empirical Asset Pricing via Machine Learning 

• 2050+ Google Scholar citation and counting

• Inspired a large body of follow-up work including my own:

     ML to predict volatility: Automated Volatility Forecasting (MS forthcoming)

     ML to predict correlation:  Forecasting and Managing Correlation Risks (Working Paper)

This paper: 

• Apply state-of-the-art LLMs to news for predicting returns 

• Broad scope: 16 global equity markets and news articles in 13 languages 



Summary 
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Models
• LLM (ChatGPT, LLAMA, LLAMA2, RoBERTa, BERT)

• Word-based Models (Word2vec, SESTM, LMMD)

• ML Models (RIDGE, LASSO, RF, NN)

Sentiment Analysis 
• Textual features from news to predict binary outcome (1 if ret>0), compare model performance on

     1) sentiment prediction accuracy, 2) return predictive power using news sentiment

Return Prediction
• Estimate RIDGE using one-day-ahead ret as dep var and textual features from a model as inputs

• Use predicted returns as sorting variables



Summary
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Main Findings  
• Returns respond slowly to news

• LLMs outperform traditional word-based models in sentiment analysis and return prediction

Overall
• Extremely comprehensive (big data, tons of analyses, efforts for writing three papers into one)

• Highly educational (excellent details on models and implementation), recommend to everyone

• Expect similar impact to that of Gu, Kelly, and Xiu (2020) in the years to come



Comment 1: Sentiment Score
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Primary aim of sentiment analysis: 

delineate relation between specific text-based features 𝒙𝒙𝒊𝒊,𝒕𝒕 and binary sentiment label 𝒚𝒚𝒊𝒊,𝒕𝒕 on 
training articles: 𝑬𝑬(𝒚𝒚𝒊𝒊,𝒕𝒕 𝒙𝒙𝒊𝒊,𝒕𝒕 = 𝝈𝝈 𝒙𝒙′𝒊𝒊,𝒕𝒕𝜷𝜷  ; 𝝈𝝈(𝒙𝒙) is a logistic link function

• To achieve this, require a sentiment label for each article in the training sample

• Create sentiment labels based on 3-day returns surrounding the news article

 



Comment 1: Sentiment Score
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3-day return as label, window too long
• 3-day return might not be sharp enough: confounding news or even non-news market-moving events

• Instead, high-frequency and instantaneous market reaction to news (i.e., 15-min) is more meaningful

Significantly lower L-S 
portfolio return for large 
firms, likely due to more 
confounding news and 
faster price reactions of 
large firms

Recommendation 1: 
use intraday high-
frequency returns as 
labels



Comment 1: Sentiment Score
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Recommendation 2: Compare with manual labeling by expert readers

• Bloomberg News Sentiment: fine-tuned using datasets that include expert-labeled sentiments

• Refinitiv (formerly Thomson Reuters News Analytics): models are trained using a combination 
of machine learning and expert-labeled data

• StockTwits: platform aggregates user-generated content and assigns sentiment scores based on 
positive or negative mentions of stocks

• RavenPack: uses supervised learning methods that involve expert-labeled data as part of the 
training



Comment 2: Benchmark to News Mom of Jiang, Li, and Wang (2021) 
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Jiang, Li, and Wang (2021 JFE): 

 Pervasive underreaction: Evidence from high-frequency data 

• 26 overnight and 15-min returns per day; return in interval j on day t as 𝑟𝑟𝑡𝑡
𝑗𝑗, j = 1,2,…, 26

• Combine intraday firm-level news and return data to create news-driven returns

• Construct daily close-to-close “news return” as signals: 

• One-day news-return signal to predict 5-day-ahead return



Comment 2: Benchmark to Jiang, Li, and Wang (2021) 
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• Over 2000-2019 sample ($1 price filter), EW annual return 34%, VW annual return 25%
• Survives transaction cost, a leading hedge fund still actively trades on it
• Easy to implement yet very effective, serves as a benchmark



Comment 3: Is Predictability Front-Loaded?
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• Use news between 9am on day t-1 to 9am on day t to predict 9am-9am return on day t+1

• Assuming daily TC of 10 bps for large stocks and 20 bps for small stocks, net (after TC) 
annual Sharpe Ratio is around 1.5

• What if the predictability is front-loaded, i.e., concentrated at the beginning of the holding 
period, such as 1-min after 9am, where immediate trading is difficult? The predictability 
of large and liquid stocks might be more front-loaded.  It might be worth conducting a 
more granular analysis at the intraday level.

  



Comment 4: News Category and News Clustering

Examine news separately across various categories 

• Likely stronger predictive power based on fundamental news

Explore news clustering effects

• Test whether holding period return based on previous day’s news signal is driven 
by the momentum of news (i.e., good news is followed by good news, and vice 
versa) 
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Conclusion
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•  Extremely comprehensive and highly educational, impactful in the years to come

•  Very well written and very enjoyable to read, highly recommend it to everyone

•  Further analyses: comparisons to alternative sentiment scores, benchmarking to news-
mom strategy, exploring possible front-loaded return predictability, and examining news 
categories and news clustering

• I look forward to reading future versions! 
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