

Jacobs Levy Equity Management Center for Quantitative Financial Research

Discussion: Expected Returns and Large Language Models

Sophia Zhengzi Li, Rutgers Business School

AI Application in Finance

Gu, Kelly, and Xiu (2020): Empirical Asset Pricing via Machine Learning

- 2050+ Google Scholar citation and counting
- Inspired a large body of follow-up work including my own:

ML to predict volatility: *Automated Volatility Forecasting* (MS forthcoming)

ML to predict correlation: *Forecasting and Managing Correlation Risks* (Working Paper)

This paper:

- Apply state-of-the-art LLMs to news for predicting returns
- Broad scope: 16 global equity markets and news articles in 13 languages

Summary

Models

- LLM (ChatGPT, LLAMA, LLAMA2, RoBERTa, BERT)
- Word-based Models (Word2vec, SESTM, LMMD)
- ML Models (RIDGE, LASSO, RF, NN)

Sentiment Analysis

• Textual features from news to predict binary outcome (1 if ret>0), compare model performance on

1) sentiment prediction accuracy, 2) return predictive power using news sentiment

Return Prediction

- Estimate RIDGE using one-day-ahead ret as dep var and textual features from a model as inputs
- Use predicted returns as sorting variables

Summary

Main Findings

- Returns respond slowly to news
- LLMs outperform traditional word-based models in sentiment analysis and return prediction

Overall

- Extremely comprehensive (big data, tons of analyses, efforts for writing three papers into one)
- Highly educational (excellent details on models and implementation), recommend to everyone
- Expect similar impact to that of Gu, Kelly, and Xiu (2020) in the years to come

Comment 1: Sentiment Score

Primary aim of sentiment analysis:

delineate relation between specific text-based features $x_{i,t}$ and binary sentiment label $y_{i,t}$ on training articles: $E(y_{i,t}|x_{i,t}) = \sigma(x'_{i,t}\beta)$; $\sigma(x)$ is a logistic link function

- To achieve this, require a sentiment label for each article in the training sample
- Create sentiment labels based on 3-day returns surrounding the news article

Comment 1: Sentiment Score

3-day return as label, window too long

- 3-day return might not be sharp enough: confounding news or even non-news market-moving events
- Instead, high-frequency and instantaneous market reaction to news (i.e., 15-min) is more meaningful

Figure 4: One-day-ahead Portfolio Performance based on LLaMA2

Significantly lower L-S portfolio return for large firms, likely due to more confounding news and faster price reactions of large firms

Recommendation 1: use intraday highfrequency returns as labels

Comment 1: Sentiment Score

Recommendation 2: Compare with manual labeling by expert readers

- Bloomberg News Sentiment: fine-tuned using datasets that include expert-labeled sentiments
- Refinitiv (formerly Thomson Reuters News Analytics): models are trained using a combination of machine learning and expert-labeled data
- **StockTwits:** platform aggregates user-generated content and assigns sentiment scores based on positive or negative mentions of stocks
- RavenPack: uses supervised learning methods that involve expert-labeled data as part of the training

Comment 2: Benchmark to News Mom of Jiang, Li, and Wang (2021)

Jiang, Li, and Wang (2021 JFE):

Pervasive underreaction: Evidence from high-frequency data

- 26 overnight and 15-min returns per day; return in interval j on day t as r_t^{j} , j = 1,2,..., 26
- Combine intraday firm-level news and return data to create news-driven returns

$$r_{t,news}^{j} = \begin{cases} r_{t}^{j} & \text{if there is a news story in interval } j \\ 0 & \text{otherwise,} \end{cases}$$

• Construct daily close-to-close "news return" as signals:

$$R_{t,news} = \prod_{j=1}^{26} (1 + r_{t,news}^j) - 1.$$

• One-day news-return signal to predict 5-day-ahead return

Comment 2: Benchmark to Jiang, Li, and Wang (2021)

- Over 2000-2019 sample (\$1 price filter), EW annual return 34%, VW annual return 25%
- Survives transaction cost, a leading hedge fund still actively trades on it
- Easy to implement yet very effective, serves as a benchmark

Comment 3: Is Predictability Front-Loaded?

• Use news between 9am on day t-1 to 9am on day t to predict 9am-9am return on day t+1

 Assuming daily TC of 10 bps for large stocks and 20 bps for small stocks, net (after TC) annual Sharpe Ratio is around 1.5

 What if the predictability is front-loaded, i.e., concentrated at the beginning of the holding period, such as 1-min after 9am, where immediate trading is difficult? The predictability of large and liquid stocks might be more front-loaded. It might be worth conducting a more granular analysis at the intraday level.

Comment 4: News Category and News Clustering

Examine news separately across various categories

• Likely stronger predictive power based on fundamental news

Explore news clustering effects

 Test whether holding period return based on previous day's news signal is driven by the momentum of news (i.e., good news is followed by good news, and vice versa)

Conclusion

• Extremely comprehensive and highly educational, impactful in the years to come

• Very well written and very enjoyable to read, highly recommend it to everyone

 Further analyses: comparisons to alternative sentiment scores, benchmarking to newsmom strategy, exploring possible front-loaded return predictability, and examining news categories and news clustering

• I look forward to reading future versions!