

JACOBS LEVY EQUITY MANAGEMENT CENTER

for Quantitative Financial Research

Discussion: "Reversals and the Returns to Liquidity Provision"

Winston Dou (Wharton)

Motivation

What is the expected return of liquidity provision in capital markets?

- Economists: A central question in asset pricing
- Investors: The immediacy costs they face in their trading
- Regulators: A vital role of market liquidity in maintaining financial stability

Although technological advancements can enhance market liquidity, they also introduce new challenges

- e.g., decimalization, electronic trading facilities, algo trading, big data
- e.g., AI-powered trading (Dou_Goldstein_Ji, 2023)
- Technologies promote herding with similar trading decisions driven by the same strong signals (e.g., SEC Chair, Gary Gensler)
- The value of liquidity provision & market illiquidity remain significant

Motivation

What is the expected return of liquidity provision in capital markets?

- Economists: A central question in asset pricing
- Investors: The immediacy costs they face in their trading
- Regulators: A vital role of market liquidity in maintaining financial stability

Although technological advancements can enhance market liquidity, they also introduce new challenges

- e.g., decimalization, electronic trading facilities, algo trading, big data
- e.g., AI-powered trading (Dou_Goldstein_Ji, 2023)
- Technologies promote herding with similar trading decisions driven by the same strong signals (e.g., SEC Chair, Gary Gensler)

- The value of liquidity provision & market illiquidity remain significant

A difficult question to address

Key challenge: What is "market liquidity"?

- It is determined by the demand and supply of "immediacy" in trading (Grossman_Miller, 1988)

Market liquidity is an abstract and multi-dimensional concept (e.g., Kyle, 1985)

- Numerous factors from both the demand and supply sides play a role
- Pinning it down to just one number or statistic is tough

Different facets of market liquidity may have distinct market prices

A difficult question to address

Key challenge: What is "market liquidity"?

- It is determined by the demand and supply of "immediacy" in trading (Grossman_Miller, 1988)

Market liquidity is an abstract and multi-dimensional concept (e.g., Kyle, 1985)

- Numerous factors from both the demand and supply sides play a role
- Pinning it down to just one number or statistic is tough

Different facets of market liquidity may have distinct market prices

A difficult question to address

Key challenge: What is "market liquidity"?

- It is determined by the demand and supply of "immediacy" in trading (Grossman_Miller, 1988)

Market liquidity is an abstract and multi-dimensional concept (e.g., Kyle, 1985)

- Numerous factors from both the demand and supply sides play a role
- Pinning it down to just one number or statistic is tough

Different facets of market liquidity may have distinct market prices

The objective of this paper

Estimate the expected return from providing various types of liquidity

Step 1: Identify the component in reversals due to liquidity provision (IRRX)

- Remove the following two components from the standard reversals (REV)
 - The post-earnings-announcement drift (PEAD)
 - The industry momentum (IMOM)

Step 2: Dissect liquidity-driven return reversals to identify their sources, focusing on:

- Inventory risk, measured by stock return volatility
- Inventory duration, measured by stock turnover

The objective of this paper

Estimate the expected return from providing various types of liquidity

Step 1: Identify the component in reversals due to liquidity provision (IRRX)

- Remove the following two components from the standard reversals (REV)
 - The post-earnings-announcement drift (PEAD)
 - The industry momentum (IMOM)

Step 2: Dissect liquidity-driven return reversals to identify their sources, focusing on:

- Inventory risk, measured by stock return volatility
- Inventory duration, measured by stock turnover

Estimate the expected return from providing various types of liquidity

Step 1: Identify the component in reversals due to liquidity provision (IRRX)

- Remove the following two components from the standard reversals (REV)
 - The post-earnings-announcement drift (PEAD)
 - The industry momentum (IMOM)

Step 2: Dissect liquidity-driven return reversals to identify their sources, focusing on:

- Inventory risk, measured by stock return volatility
- Inventory duration, measured by stock turnover

Decomposition of short-term return reversals

	-	-	-	-
Panel A: Strategy average monthly excess return (%)				
REV	PEAD	IMOM	IRR	IRRX
0.31 [1.68]	0.53 [5.45]	0.68 [3.57]	0.74 [5.40]	1.08 [9.35]
Panel B: Results from $\text{REV}_t = \alpha + \beta_{\text{IRRX}} \text{IRRX}_t + \beta_{\text{PEAD}} \text{PEAD}_t + \beta_{\text{IMOM}} \text{IMOM}_t + \epsilon_t$				
α	$\beta_{_{\mathrm{IRRX}}}$	${eta}_{ m PEAD}$	$\beta_{_{\rm IMOM}}$	Adj. $R^2~(\%)$
$0.13 \\ [1.73]$	$ \begin{array}{c} 0.76\\ [27.8] \end{array} $	-0.54 [-17.4]	-0.53 [-30.4]	87.0

- The average return of IRRX is very significant
- High adjusted R²

Inventory risk (stock return volatility)

- About 0.6% for 13 days \Rightarrow about 1.2% monthly excess return

Inventory duration (stock turnover)

- About 0.8% for 60 days \Rightarrow about 0.4% monthly excess return

The idea: remove the following components from the standard reversals

- Drift resulting from an under-reaction to firm-level cash flow
- Drift resulting from an under-reaction to industry-level cash flow news

- Under-reaction to firm-level cash flow news
 - Return predictability via input-output links (Cohen_Frazzini, 2008)
- Under-reaction to industry-level cash flow news
 - Lead and lag industries (Hong_Torous_Valkanov, 2007)
 - Cross-industry MOM via the competition network (Dou_Wu, 2023)

The idea: remove the following components from the standard reversals

- Drift resulting from an under-reaction to firm-level cash flow
- Drift resulting from an under-reaction to industry-level cash flow news

- Under-reaction to firm-level cash flow news
 - Return predictability via input-output links (Cohen_Frazzini, 2008)
- Under-reaction to industry-level cash flow news
 - Lead and lag industries (Hong_Torous_Valkanov, 2007)
 - Cross-industry MOM via the competition network (Dou_Wu, 2023)

The idea: remove the following components from the standard reversals

- Drift resulting from an under-reaction to firm-level cash flow
- Drift resulting from an under-reaction to industry-level cash flow news

- Under-reaction to firm-level cash flow news
 - Return predictability via input-output links (Cohen_Frazzini, 2008)
- Under-reaction to industry-level cash flow news
 - Lead and lag industries (Hong_Torous_Valkanov, 2007)
 - Cross-industry MOM via the competition network (Dou_Wu, 2023)

The idea: remove the following components from the standard reversals

- Drift resulting from an under-reaction to firm-level cash flow
- Drift resulting from an under-reaction to industry-level cash flow news

- Under-reaction to firm-level cash flow news
 - Return predictability via input-output links (Cohen_Frazzini, 2008)
- Under-reaction to industry-level cash flow news
 - Lead and lag industries (Hong_Torous_Valkanov, 2007)
 - Cross-industry MOM via the competition network (Dou_Wu, 2023)

The idea: remove the following components from the standard reversals

- Drift resulting from an under-reaction to firm-level cash flow
- Drift resulting from an under-reaction to industry-level cash flow news

- Under-reaction to firm-level cash flow news
 - Return predictability via input-output links (Cohen_Frazzini, 2008)
- Under-reaction to industry-level cash flow news
 - Lead and lag industries (Hong_Torous_Valkanov, 2007)
 - Cross-industry MOM via the competition network (Dou_Wu, 2023)

2. Identifying the expected return on inventory risk

For such identification, causal inferences are necessary

- Return volatility and return reversal are both endogenous
- The association may not reflect the causal relation (aim to establish)

Reverse causality issues:

Noise trader risk

- The monthly standard deviation of retail investors order imbalance (Boehmer_Jones_Zhang_Zhang, 2021)
- It is the volatility risk that comes from short-term noise trading (and thus captures the inventory risk)

2. Identifying the expected return on inventory risk

For such identification, causal inferences are necessary

- Return volatility and return reversal are both endogenous
- The association may not reflect the causal relation (aim to establish)

Reverse causality issues:

- High return volatility <= strong and quick return reversals

Noise trader risk

- The monthly standard deviation of retail investors order imbalance (Boehmer_Jones_Zhang_Zhang, 2021)
- It is the volatility risk that comes from short-term noise trading (and thus captures the inventory risk)

2. Identifying the expected return on inventory risk

For such identification, causal inferences are necessary

- Return volatility and return reversal are both endogenous
- The association may not reflect the causal relation (aim to establish)

Reverse causality issues:

Noise trader risk

- The monthly standard deviation of retail investors order imbalance (Boehmer_Jones_Zhang_Zhang, 2021)
- It is the volatility risk that comes from short-term noise trading (and thus captures the inventory risk)

Inventory risk and duration are both supply-side factors of liquidity

- How about the demand-side factors of liquidity?

Trading intensity of noise traders

- Retail investors' absolute monthly order imbalance

Price impact estimated based on the demand system (Koijen_Yogo, 2019)

- What are their relations with the dynamics of return reversals?

Inventory risk and duration are both supply-side factors of liquidity

- How about the demand-side factors of liquidity?

Trading intensity of noise traders

- Retail investors' absolute monthly order imbalance

Price impact estimated based on the demand system (Koijen_Yogo, 2019)

- What are their relations with the dynamics of return reversals?

Inventory risk and duration are both supply-side factors of liquidity

- How about the demand-side factors of liquidity?

Trading intensity of noise traders

- Retail investors' absolute monthly order imbalance

Price impact estimated based on the demand system (Koijen_Yogo, 2019)

- What are their relations with the dynamics of return reversals?

Conclusion

- A significant empirical contribution on an important topic
- What I appreciate the most:
 - A useful estimate of the expected returns from liquidity provision
 - A valuable perspective on the pricing of liquidity from various origins

- Suggestions:

- Refine the metric for the liquidity-provision component in the reversals
- Sharpen the identification of the impacts of inventory risk
- Explore the factors influencing liquidity from the demand perspective

