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Recent losers outperform recent winners
0 On average
Well documented

0 Fama (1965), Roll (1984), Jegadeesh (1990), Lehmann
(1990)

Fairly weak outside microcaps

0 Modest spreads, marginal significance

0 Gotten weaker
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“The returns of short-term reversal strategies in
equity markets can be interpreted as a proxy for
the returns from liquidity provision”

2 Nagel, JF 2012
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<2, BNk Basic intuition

To accommodate sellers’ demands...
0 ...Liquidity providers must buy

While selling pushes prices down

Liquidity providers expect compensation

0 Unwind (sell) later for more (on average)
As liquidity replenished and prices recover
I.e., as “losers” rise
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Evidence (Nagel 2012)

= Trading more costly in volatile markets

0 So high vol =» more profitable reversals
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Cross-sectional implications

If reversals proxy for the returns to liquidity provision...
0 ... Then i1lliquidity differences should matter!

Across stocks
How should we even measure illiquidity?

Should obviously look at magnitudes

0 Also persistence!
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Reversals by volatility

Low volatility

== High volatility
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S1ze (small stocks are less liquid)
Volatility

0 Strongly correlated with t-costs
In both the cross-section and the time-series

0 Drives market maker inventory risk
Turnover
0 Less liquidity should imply less trading

And longer inventory durations
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Bigger for micro-caps

0 Known...but surprisingly concentrated
Strong among high-vol. stocks

0 Which expose MMs to more inventory risk

Persistent for low-TO stocks

0 Where mnventory durations are longer

Huge variation in persistence!

2 “Business time” or “trade time”’



SIMON

susiness R eversal refinement

ROCHESTER

Reversals as a lens to study liquidity

Theory: Price moves unrelated to news =» reversals
Common reversals trade against news

0 Earnings announcements
Post-earning announcement drift (PEAD)

o News about industries
Short-term industry momentum (IMOM)
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U |osmess R 1d 1t1
G
| BUSINES eversal decomposition
Panel A: Strategy average monthly excess return (%)
REV PEAD IMOM IRR IRRX
0.31 0.53 0.68 0.74 1.08
1.68] [5.45] [3.57] [5.40] [9.35]
Panel B: Results from REV; = a + 3.« IRRX: + B0 PEAD: + 31,00 IMOM; + €
M O Opean_______| Onvow_____ Adj. B2 (%)
0.13 0.76 -0.54 -0.53 87.0
1.73] 27.8] [17.4] -30.4]
We mostly use IRRX

0 Results robust to using REV
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How do reversals vary with different aspects of
1lliquidity?
0 Evolution over time

From portfolio formation

Use size, volatility, and turnover

0 Look at 1-, 5-, and 21-day past performance
Will focus mostly on 5-day

0O 1-day has clean interpretation, but noisy results

0O 21-day 1s least noisy, but interpretation 1s harder
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= Average WML spread from formation
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0 Stronger for microcaps (~3% of the market)

= More limited market-making
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= Average WML spread from formation
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0 High vol associated w/ stronger, initially faster revs

= More vol =» greater inventory risk
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= Average WML spread from formation
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0 Low TO =» longer-lived, more persistent reversals

= Less turnover =2 longer inventory durations
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When studying impact of illiquidity...
2 ...Should control for other measures

Our measures are correlated

0O Volatility and turnover are positively correlated
0 Small stocks tend to be more volatile and trade less

Use propensity-matched sorting procedure of Novy-
Marx (2015)

0 Within three FF (2016) size universes

16
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Results with controls

0 Though less variation 1n past performance

Panel B: Small cap conditional winner-minus-loser spreads by volatility (left) and turnover (right)
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These patters explain several results 1n the literature

0 Connecting resul

ts that were seemingly unrelated. ..

0 ...And also yield

| different, more nuanced interpretations

Some of which are very different from current common

understanding
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= Medhat and Schmeling (RFS 2022)

Panel A: Coexistence of reversal and momentum in one-month returns

= = =
e (g [a] (%]

Mean winner-minus-loser spread (%/month)
S
o)

1

<

o0
I

Short-term momentum Short-term reversal Short-term reversal
(Highest turnover quintile) (All stocks) (Lowest turnover quintile)
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Panel B: Reversal performance from formation by turnover

21-day reversals from formation 5-day reversals from formation
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o Also related results of Avramov, Chordia, and Goyal (2006)
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Novy-Marx and Velikov (2016)

0 Strong 1-month industry-relative reversals among low-volatility stocks
Much stronger than in high-vol.

Surprising because they are more liquid, and much cheaper to trade
Kozak, Nagel, and Santosh (2020)

0 Single most important anomaly for a stochastic discount factor
identified by machine learning techniques
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Cumulative return (%)

21-day industry-relative reversals

Low volatility
——— High volatility
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0 Actually stronger for high-vol.!

= Just at a higher frequency, hard to see monthly
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Arena, Haggard, and Yan (2008)

0 Momentum stronger for high-volatility stocks
Novy-Marx (2012)

0 Momentum primarily driven by intermediate horizon past performance
Stock returns over the first half of the preceding year

0 Not short-run past performance

Recent six months matter much less
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Long run WML spreads

= Based on one month of stock performance
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Figure suggests results of Novy-Marx (2012) should be
concentrated 1n low volatility stocks

0 High vol: Performance over the next six months similar to six
months after

a Low vol: No momentum for six month, momentum after

Prediction: Disparity decreasing with volatility
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NYSE volatility quintile

All Low 2 3 4 High  H-L
MOM;  0.87 0.68 0.77 0.73 1.01 0.96 0.28
4.57)  [3.54]  [4.01]  [3.68]  [4.32]  [4.59]  [1.16]
MOMg,  0.22 030  -0.25 0.14 0.49 1.17 1.48
1.03]  [-1.10]  [-1.18]  [0.57]  [2.01]  [5.07]  [4.66]
Diff. 0.65 0.98 1.02 0.60 0.53 021 -1.20
2.86]  [3.06]  [3.80]  [2.11]  [1.92]  [-0.89]  [-3.27]

Unconditional difference in Novy-Marx (2012)
driven by low-volatility stocks
2 Strong short-run momentum 1s high vol
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Cross-sectional implications of 1lliquidity on the returns
to liquadity provision

0 Small =» Stronger reversals

0 High volatility =» Strong initial reversals

o Low turnover =» Long-lived reversals

These three 1lliquidity variables also capture basically all the cross-
sectional variation in Amihud’s (2002) popular illiquidity measure
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Accounting for predictable variation 1n reversal
magnitudes and persistence:

0 Helps explain seemingly disparate results 1n the literature on
reversals and momentum

Importance of looking at phenomena at the appropriate frequency

0 Should reduce cost of demanding liquidity, increase
compensation for providing it
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Reversals commonly studied greatly attenuated by
trading against two news-related effects: industry
momentum and post-earnings-announcement drift

Basic results all hold beyond the US
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