

Reversals and the returns to liquidity provision

Wei Dai, Dimensional Fund AdvisorsMamdouh Medhat, Dimensional Fund AdvisorsRobert Novy-Marx, Simon-Rochester and NBERSavina Rizova, Dimensional Fund Advisors

- Recent losers outperform recent winners
 - On average
- Well documented
 - Fama (1965), Roll (1984), Jegadeesh (1990), Lehmann (1990)
- Fairly weak outside microcaps
 Modest spreads, marginal significance
 Gotten weaker

"The returns of short-term reversal strategies in equity markets can be interpreted as a proxy for the returns from liquidity provision"

□ Nagel, JF 2012

- To accommodate sellers' demands...
 - ...Liquidity providers must buy
 - While selling pushes prices down
- Liquidity providers expect compensation
 - Unwind (sell) later for more (on average)
 - As liquidity replenished and prices recover
 - I.e., as "losers" rise

■ Trading more costly in volatile markets ■ So high vol → more profitable reversals

Cross-sectional implications

- If reversals proxy for the returns to liquidity provision...
 - ... Then illiquidity differences should matter!
 - Across stocks
 - How should we even measure illiquidity?
- Should obviously look at magnitudes
 Also persistence!

ROCHESTER SIMON BUSINESS SCHOOL WML spread from formation

- Size (small stocks are less liquid)
- Volatility
 - Strongly correlated with t-costs
 - In both the cross-section and the time-series
 - Drives market maker inventory risk

Turnover

- Less liquidity should imply less trading
 - And longer inventory durations

- Bigger for micro-caps
 - Known...but surprisingly concentrated
- Strong among high-vol. stocks
 - Which expose MMs to more inventory risk
- Persistent for low-TO stocks
 - Where inventory durations are longer
 - Huge variation in persistence!
 - "Business time" or "trade time"

ROCHESSIER SIMON BUSINESS SCHOOL Reversal refinement

- Reversals as a lens to study liquidity
- Theory: Price moves **unrelated** to news → reversals
- Common reversals trade against news
 - Earnings announcements
 - Post-earning announcement drift (PEAD)
 - News about industries
 - Short-term industry momentum (IMOM)

ROCHESTER SIMON BUSINESS SCHOOL Reversal decomposition

Panel A: Strategy average monthly excess return (%)										
REV	PEAD	IMOM	IRR	IRRX						
$0.31 \\ [1.68]$	$0.53 \\ [5.45]$	$0.68 \\ [3.57]$	$\begin{array}{c} 0.74 \\ [5.40] \end{array}$	$1.08 \\ [9.35]$						
Panel B: Results from $\text{REV}_t = \alpha + \beta_{\text{IRRX}} \text{IRRX}_t + \beta_{\text{PEAD}} \text{PEAD}_t + \beta_{\text{IMOM}} \text{IMOM}_t + \epsilon_t$										
α	β_{IRRX}	β_{PEAD}	$\beta_{\rm IMOM}$	Adj. R^2 (%)						
$0.13 \\ [1.73]$	0.76 [27.8]	-0.54 $[-17.4]$	-0.53 [-30.4]	87.0						

We mostly use IRRXResults robust to using REV

- How do reversals vary with different aspects of illiquidity?
 - Evolution over time
 - From portfolio formation
- Use size, volatility, and turnover
 - □ Look at 1-, 5-, and 21-day past performance
 - Will focus mostly on 5-day
 - □ 1-day has clean interpretation, but noisy results
 - □ 21-day is least noisy, but interpretation is harder

Average WML spread from formation

- Stronger for microcaps ($\sim 3\%$ of the market)
 - More limited market-making

Average WML spread from formation

□ High vol associated w/ stronger, initially faster revs
 ■ More vol → greater inventory risk

Average WML spread from formation

Low TO → longer-lived, more persistent reversals
 Less turnover → longer inventory durations

ROCHHESTER SIMON BUSINESS SCHOOL HOlding all else equal

- When studying impact of illiquidity...
 - ... Should control for other measures
 - Our measures are correlated
 - □ Volatility and turnover are positively correlated
 - □ Small stocks tend to be more volatile and trade less
- Use propensity-matched sorting procedure of Novy-Marx (2015)
 - □ Within three FF (2016) size universes

ROCHESTER SIMON BUSINESS SCHOOL Results with controls

Consistent (even cleaner) results Though less variation in past performance

Panel B: Small cap conditional winner-minus-loser spreads by volatility (left) and turnover (right)

- These patters explain several results in the literature
 Connecting results that were seemingly unrelated...
 - ... And also yield different, more nuanced interpretations
 - Some of which are very different from current common understanding

Medhat and Schmeling (RFS 2022)

Panel A: Coexistence of reversal and momentum in one-month returns

□ Also related results of Avramov, Chordia, and Goyal (2006)

ROCHESTER SIMON BUSINESS SCHOOL Related results II

- Novy-Marx and Velikov (2016)
 - □ Strong 1-month industry-relative reversals among low-volatility stocks
 - Much stronger than in high-vol.
 - Surprising because they are more liquid, and much cheaper to trade
- Kozak, Nagel, and Santosh (2020)
 - Single most important anomaly for a stochastic discount factor identified by machine learning techniques

Days from formation

• Actually stronger for high-vol.!

Just at a higher frequency, hard to see monthly

ROCHESTER SIMON BUSINESS SCHOOL Related results III

- Arena, Haggard, and Yan (2008)
 - Momentum stronger for high-volatility stocks
- Novy-Marx (2012)
 - Momentum primarily driven by intermediate horizon past performance
 - Stock returns over the **first half** of the preceding year
 - Not short-run past performance
 - Recent six months matter much less

Based on one month of stock performance

- Figure suggests results of Novy-Marx (2012) should be concentrated in low volatility stocks
 - High vol: Performance over the next six months similar to six months after
 - □ Low vol: No momentum for six month, momentum after
 - Prediction: Disparity decreasing with volatility

Differences by volatility

_	All	Low	2	3	4	High	H-L
$MOM_{12,7}$	$0.87 \\ [4.57]$	$0.68 \\ [3.54]$	$0.77 \\ [4.01]$	$0.73 \\ [3.68]$	$1.01 \\ [4.32]$	$0.96 \\ [4.59]$	0.28 [1.16]
$MOM_{6,2}$	$0.22 \\ [1.03]$	-0.30 [-1.10]	-0.25 [-1.18]	$0.14 \\ [0.57]$	$0.49 \\ [2.01]$	$1.17 \\ [5.07]$	$1.48 \\ [4.66]$
Diff.	0.65 [2.86]	$ \begin{array}{c} 0.98\\[3.06]\end{array} $	1.02 [3.80]	0.60 [2.11]	$0.53 \\ [1.92]$	-0.21 [-0.89]	-1.20 [-3.27]

 Unconditional difference in Novy-Marx (2012) driven by low-volatility stocks

• Strong short-run momentum is high vol

- Cross-sectional implications of illiquidity on the returns to liquidity provision
 - \Box Small \rightarrow Stronger reversals
 - \Box High volatility \rightarrow Strong initial reversals
 - \Box Low turnover \rightarrow Long-lived reversals
 - These three illiquidity variables also capture basically all the crosssectional variation in Amihud's (2002) popular illiquidity measure

- Accounting for predictable variation in reversal magnitudes and persistence:
 - Helps explain seemingly disparate results in the literature on reversals and momentum
 - Importance of looking at phenomena at the **appropriate frequency**
 - Should reduce cost of demanding liquidity, increase compensation for providing it

- Reversals commonly studied greatly attenuated by trading against two news-related effects: industry momentum and post-earnings-announcement drift
- Basic results all hold beyond the US