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Abstract

When alphas are weak and rare, and arbitrageurs have to learn about alphas from historical

data, there is a gap between Sharpe ratio that is feasible for them to achieve and the infeasible

Sharpe ratio that could be obtained with perfect knowledge of parameters in the return

generating process. This statistical limit to arbitrage widens the bounds within which alphas

can survive in equilibrium relative to the arbitrage pricing theory (APT) in which arbitrageurs

are endowed with perfect knowledge. We derive the optimal Sharpe ratio achievable by any

feasible arbitrage strategy, and illustrate in a simple model how this Sharpe ratio varies with

the strength and sparsity of alpha signals, which characterize the difficulty of arbitrageurs’

learning problem. Furthermore, we design an “all-weather” arbitrage strategy that achieves

this optimal Sharpe ratio regardless of the conditions of alpha signals. Our empirical analysis

of equity returns shows that this optimal strategy, along with other feasible strategies based

on multiple-testing, LASSO, and Ridge methods, achieve a moderately low Sharpe ratio out

of sample, in spite of a considerably higher infeasible Sharpe ratio, consistent with absence of

feasible near-arbitrage opportunities and relevance of statistical limits to arbitrage.
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1 Introduction

It is a fundamental underlying principle of most asset pricing theories, including the Arbitrage

Pricing Theory (APT), that investment opportunities with extremely high ratios of reward to risk do

not exist in financial markets. Implicitly, these theories rest on the premise that such near-arbitrage

opportunities would attract arbitrageurs who exploit and thereby eliminate these opportunities. An

important assumption in these theories is that parameters in the data generating process (DGP) of

returns are known to arbitrageurs. Therefore, near-arbitrage opportunities in the DGP of returns

are ruled out.

In practice, however, sophisticated investors searching for near-arbitrage opportunities do not

know the true parameters. Instead, they commonly conduct statistical analyses to learn about the

existence of such opportunities from historical returns data. As a consequence, they face statistical

uncertainty. In some settings, such as in some derivatives pricing applications, for instance, the

statistical uncertainty may be sufficiently small that it is not a significant impediment to arbitrageur

activity. But in noisy, high-dimensional settings such as the cross-section of stock returns, statistical

uncertainty can be substantial and it can constitute a statistical limit to arbitrage.

To analyze the effects of arbitrageur learning, we consider a setting in which returns follow a

statistical linear factor model. Near-arbitrage opportunities are characterized by high Sharpe ratios.

To exploit such opportunities, arbitrageurs need knowledge of factor model alphas, but they must

learn about these from historical realizations of alpha signals. We derive the optimal Sharpe ratio

achievable by any feasible arbitrage trading strategies, which is strictly dominated by the infeasible

optimal Sharpe ratio that arbitrageurs could achieve if they were endowed with perfect knowledge

of alphas. This, in turn, provides a new no-near-feasible-arbitrage bound on the Sharpe ratio that

accounts for the statistical limit to arbitrage.

The difficulty of the learning problem hinges on the DGP of alpha signals. While our theory

generally does not rely on specific cross-sectional distributions of alpha signals, we use simple special

cases to demonstrate how the optimal Sharpe ratio varies with the strength and sparsity of alphas.

When alphas are strong and not too rare relative to the dimensionality of the cross-section and

the sample size, arbitrageurs can learn the distribution of alpha perfectly in the limit. But when

alpha is weaker and more rare, its inference becomes more challenging and a gap arises between

the optimal feasible Sharpe ratio and the infeasible Sharpe ratio that requires perfect knowledge

of alphas. For instance, the infeasible Sharpe ratio may explode asymptotically, while the feasible

Sharpe ratio stays bounded.

The existence of this statistical limit to arbitrage implies a widening of the bounds in which

mispricing can survive in equilibrium compared with a situation in which arbitrageurs know the

DGP and its parameters. Some mispricing may survive because it is clouded by too much statistical

uncertainty. Empirically therefore, the feasible, not the infeasible, Sharpe ratio tells us about the

minimum reward-to-risk compensation that arbitrageurs require.

We further demonstrate how arbitrageurs can construct a feasible trading strategy that achieves
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the theoretically optimal feasible Sharpe ratio, uniformly over DGPs of alphas, regardless of the

strength and sparsity of alphas. This means that the feasible Sharpe ratio bound is in fact sharp.

A uniformly valid trading strategy is desirable because in reality arbitrageurs do not know which

DGP is a correct description of the observed data. The optimal strategy estimates the empirical

distribution of alpha signals and assigns weights based on the relative magnitudes and associated

uncertainty of the alpha estimates. Assets with high alpha t-statistics get portfolio weights propor-

tional to their signal strength. Weaker alphas are more difficult to exploit, yet simply ignoring them

would lead to a suboptimal trading strategy. The optimal strategy constructs portfolio weights for

weak signals by locally smoothing alpha signals cross-sectionally.

To empirically contrast feasible and infeasible Sharpe ratios, we also propose an estimator of

the infeasible Sharpe ratio that a hypothetical arbitrageur endowed with perfect knowledge of DGP

parameters would perceive. While this Sharpe ratio can be estimated consistently, it cannot be real-

ized by any feasible portfolio with weights constructed using historical data. The infeasible Sharpe

ratio often serves as the building block for tests of APT, see, e.g., Gibbons et al. (1989), Gagliardini

et al. (2016), Fan et al. (2015), and Pesaran and Yamagata (2017). While such tests are powerful

and may lead to discoveries of alpha signals, they are not relevant for arbitrageurs who are confined

to feasible trading strategies. Our effort in constructing the optimal feasible arbitrage portfolio

and evaluating its economic performance directly responds to Shanken’s call (Shanken (1992)): “...

practical content is given to the notion of ‘approximate arbitrage,’ by characterizing the investment

opportunities that are available as a consequence of the observed expected return deviation ... Far

more will be learned, I believe, by examining the extent to which we can approximate an arbitrage

with existing assets.”

Next, we examine whether alternative strategies that exploit multiple testing, shrinkage, and

selection techniques to build arbitrage portfolios can attain the optimal feasible Sharpe ratio. With

alphas estimated from cross-sectional regressions, one strategy adopts a multiple-testing (BH) pro-

cedure as in Benjamini and Hochberg (1995) on the individual p-values of t-statistics for alpha, in

order to guard against potential false discoveries among significant alphas, before building the opti-

mal portfolio weights using selected alphas. Other strategies use either LASSO or Ridge penalties

to regularize portfolio weights based on alpha estimates. Such strategies amount to imposing a prior

distribution on the alphas. We illustrate with a simple example that these strategies can achieve op-

timal Sharpe ratio under distinct alpha assumptions. In particular, BH procedure achieves optimal

performance only when few true alpha signals are substantially strong. Its failure to achieve opti-

mality is precisely due to its conservativeness nature against the less potent alphas. In contrast, the

ridge-based portfolio is equivalent to that constructed by alpha estimates from plain cross-sectional

regressions. This approach can achieve optimality when almost all true alphas are either uniformly

strong or uniformly weak. The LASSO approach attempts to strike a balance between the aforemen-

tioned two methods, with a small gap to achieving the theoretically optimal Sharpe ratio, provided

an optimal tuning parameter.

Finally, we demonstrate the empirical implications of the statistical limits of arbitrage by examin-
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ing 56 years of monthly individual equity returns in US stock market from 1965 to 2020. The average

number of stocks over this period exceeds 4000. We construct residuals via cross-sectional regres-

sions from a multi-factor model that directly uses observed characteristics as risk exposures. These

characteristics include market beta (Fama and MacBeth (1973)), size (Banz (1981)), operating prof-

its/book equity (Fama and French (2006)), book equity/market equity (Fama and French (2006)),

asset growth (Cooper et al. (2008)), momentum (Jegadeesh and Titman (1993)), short-term rever-

sal (Jegadeesh (1990)), industry momentum (Moskowitz and Grinblatt (1999)), illiquidity (Amihud

(2002)), leverage (Bhandari (1988)), return seasonality (Heston and Sadka (2008)), sales growth

(Lakonishok et al. (1994)), accruals (Sloan (1996)), dividend yield (Litzenberger and Ramaswamy

(1979)), tangibility (Hahn and Lee (2009)), and idiosyncratic risk (Ang et al. (2006)), as well as 11

Global industry Classification Standard (GICS) sectors. These characteristics and industry dummies

capture similar equity factors in the MSCI Barra model widely-used among practitioners.

A few interesting findings emerge. First, the cross-sectional R2s are rather low, with a time-

series average 8.25% over our sample period from Jan 1965 to Dec 2020. These R2s are in similar

magnitudes compared to existing estimates in the literature, e.g., 7.8% average R2s from May

1964 to Dec 2009 reported in Lewellen (2015) using 15 factors that largely overlap with ours, but

lower than 12-14% over 1987 - 2016 reported in Gu et al. (2021) based on latent factor models.

This indicates that there exists a considerable amount of idiosyncratic noise in the cross-section of

individual equities, which makes learning about alphas an arduous statistical task.

Second, we obtain the t-statistics corresponding to alpha estimates of all individual stocks based

on their full record in our sample. Among 12,415 test statistics in total, only 6.35% (0.63%) of the

t-statistics are greater than 2.0 (3.0) in absolute values. Only 0.505% of these t-statistics translate

to Sharpe ratios greater than 1.0 in magnitude. Even without controlling for multiple testing, these

estimates suggest that non-zero alphas are rather rare and weak.

Third, we find that the optimal feasible arbitrage portfolio with different methods achieve a

moderately low annualized Sharpe ratio, about 0.5, whereas the infeasible Sharpe ratios over time

are considerably higher—beyond 2.5—on average, and can reach as high as 7.5 for some sample

periods. The estimated infeasible Sharpe ratio is an estimate of what arbitrageurs could attain if

they had perfect knowledge of DGP parameters, but it is not attainable by constructing a feasible

arbitrage portfolio. The large gap between feasible and infeasible Sharpe ratios suggests the empir-

ical relevance of the statistical limit of arbitrage. Moreover, the fact that the feasible Sharpe ratio

is small suggests the empirical success of APT.

Fourth, among all feasible strategies, BH and our optimal strategy achieve the best performance,

around a Sharpe ratio of 0.5, followed by CSR (0.450) and LASSO (0.384), though the differences

are not substantial. However, the BH approach is overly conservative that it eliminates almost all

weak signals and trade less than 10 stocks each month, with zero trading activities for over half of

the entire sample. CSR and our strategy exploit weak signals. CSR trades all stocks, but receive a

slightly lower Sharpe ratio, potentially due to misallocation of portfolio weights to fake signals. Our

optimal strategy trade almost all stocks, but with weights adaptive to the signal strength. LASSO is
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most disappointing, but this is due to the uncertainty in optimal tuning parameters. The resulting

number of traded stocks per month varies considerably from none to all.

Our paper builds on a large literature on the arbitrage pricing theory (APT) developed by Ross

(1976) and later refined by Huberman (1982), Chamberlain and Rothschild (1983), and Ingersoll

(1984). As in these papers, we rely on asymptotic arguments that do not rely on assumptions about

investor preferences, but these results should be seen as an asymptotic approximation for a more

realistic setting with a finite number of assets in which weak preference restrictions rule out Sharpe

ratios far above the Sharpe ratios of diversified factor portfolios. The statistical limits to arbitrage

that we highlight in this paper relax this Sharpe ratio bound compared with an economy in which

arbitrageurs are endowed with perfect knowledge of DGP parameters. In this regard, our paper is

also related to another large strand of literature on the limit of arbitrage, see Gromb and Vayanos

(2010) for a comprehensive review. Complementary to the existing literature, the arbitrage limit in

our setting stems from statistical uncertainty, instead of being induced from risk, costs, frictions,

and other constraints rational expectation investors are facing.

Kozak et al. (2018) argue that the absence of near-arbitrage opportunities enforces the expected

returns to approximately line up linearly with common factor covariances, even in a world in which

belief distortions affect asset prices. Our study focuses on the deviations of expected returns from

this approximate linear relation and how statistical limits to arbitrage allow bigger deviations. A

closely related paper to ours is Kim et al. (2020), which proposes a characteristics-based factor model

to construct feasible arbitrage portfolios. Their asymptotic theory does not preclude arbitrage

opportunities with a theoretically infinite Sharpe ratio, which implies a rather strong signal-to-

noise ratio in their alpha signals. Relatedly, Uppal and Zaffaroni (2018) propose a methodology

to construct robust portfolios that can be decomposed into alpha (arbitrage) portfolios and beta

(factor) portfolios. Our setting is considerably different from both papers in that the premise

of our framework rules out infinite feasible Sharpe ratios, which enforces weak and rare signals.

In our setting, alphas cannot possibly be recovered with certainty even when the sample size is

large. On the empirical side, Guijarro-Ordonez et al. (2022) propose a deep learning approach to

statistical arbitrage that achieves a sizable out-of-sample Sharpe ratio. The profits of their trading

strategy stem from generalized return reversals at daily to weekly frequencies, potentially due to

liquidity provision and other microstructure channels. Our empirical analysis is not targeted towards

characterizing the reward-to-risk ratios for high frequency traders, nor for traders that turnover a

large portion of their portfolios daily.

Our paper also contributes to the evolving literature on applications of statistical and machine

learning in asset pricing, and in particular on the topic of testing the APT, e.g., Gibbons et al.

(1989), Gagliardini et al. (2016), and Fan et al. (2015), as well as on testing for alphas, e.g., Barras

et al. (2010), Harvey and Liu (2020), and Giglio et al. (2021). The first literature focus on testing

a null that all alphas are equal to zero. This is certainly an interesting null hypothesis, but as we

emphasize in this paper, the APT does allow for alphas as long as they do not induce an explosive

feasible Sharpe ratio. The second literature focuses on detecting strong alphas, in which widely
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used multiple testing methods, such as the BH method by Benjamini and Hochberg (1995), or its

extensions can be applied to control the false discovery rate (FDR). In contrast, we allow for rare

and weak alpha signals such that any procedure aiming to control the FDR is too conservative with

too few or no discoveries.1 Our objective here is not on model testing or signal detection. Rather,

we strive for the optimal economic performance of arbitrage portfolios. We show that even if signals

were so weak that they are undetectable by multiple testing methods, they may lead to a portfolio

with a considerable Sharpe ratio.

There has been a long-standing critique of rational expectation models in macroeconomics and

finance in which economic agents are not confronted with statistical uncertainty over structure

parameters, see Hansen (2007). Bayesian learning is one way to expose model agents to statistical

uncertainty. Pastor and Veronesi (2009) survey the literature on learning in financial markets. In

many settings, e.g., Collin-Dufresne et al. (2016), learning can be sufficiently slow such that its effects

persist in empirically realistic sample sizes, even though convergence to rational expectations takes

place in the long-run. An exception is Martin and Nagel (2021) where learning effects persist because

investors face a high-dimensional inference problem about the process generating firm cash flows.

Similarly, arbitrageurs in our model attempt to make inference on a high-dimensional parameter

vector with a potentially insufficient sample size, but they learn about returns, not firms’ underlying

cash flows. We examine different sequences of DGPs and in most scenarios, our learning system

does not converge to a rational expectations limit.2

Our paper is also related to Chen et al. (2021b) and Chen et al. (2021a) in that they also account

for the distinction between beliefs of economic agents and the DGP revealed by empirical evidence.

They model belief distortions as a change of measure in moment conditions, use statistical measures

of divergence relative to rational expectation to bound the set of subjective probabilities, and seek

robust inference with this form of misspecification. In the spirit of Hansen (2014), we develop an

optimal feasible Sharpe ratio for arbitrageurs inside the economic model, which is in contrast with

the (infeasible) one from an outside econometrician’s point of view. In our setting, the deviation

from rational expectations stems naturally from the statistical obstacles economic agents are facing.

A subtle and important point we strive to make here is that economic agents embracing machine

learning methods in a high dimensional environment could achieve a distinct outcome as opposed

to what rational expectation agents could asymptotically.

From a methodological perspective, the optimal portfolio weights are proportional to the poste-

rior mean of alpha, which resembles the classical normal mean problem in empirical Bayes, dating

back to Robbins (1956), where the unknown parameters, alpha, are regarded as random draws from

some common distribution, and only a noisy version of alpha (in the form of ex-factor returns) is

observed. Our nonparametric approach thereby shares the same spirit of nonparametric empirical

1Donoho and Jin (2004) adopt the so-called higher criticism approach, dating back to Tukey (1976), to detect rare
and weak signals in a stylized multiple testing problem.

2Our analysis is related to a large literature in econometrics and statistics that discuss uniform validity of asymptotic
approximations, see, e.g., Staiger and Stock (1997), Imbens and Manski (2004), Leeb and Pötscher (2005), Andrews
et al. (2020).
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Bayes, see, e.g., Johns (1957), Zhang (1997), and Brown and Greenshtein (2009). Yet unlike the

classical empirical Bayes inference, our analysis allows for weak and rare alphas as motivated from

economic restrictions, and digs further into the Sharpe ratios above and beyond the posterior mean

of alphas.

Our paper proceeds as follows. Section 2 develops our main result on statistical limit to arbitrage.

Specifically, Section 2.1 sets up the model, Section 2.2 motivates and then defines the feasibility

constraint facing arbitrageurs, Sections 2.3 and 2.4 derive and illustrate the upper bound of feasible

Sharpe ratios, Section 2.5 constructs a feasible trading strategy that achieves the bound, Section

2.6 proposes an estimator of the infeasible Sharpe ratio, and finally Section 2.7 analyzes alternative

strategies. Section 3 provides simulation evidence, followed by an empirical analysis in Section 4.

Section 5 concludes. The appendix provides technical details.

2 Statistical Limit of Arbitrage

We start by revisiting the arbitrage pricing framework developed by Ross (1976). This setting is

ideal for explaining the statistical limit of arbitrage because the arbitrage pricing theory is largely

developed based on a reduced-form statistical model for asset returns. This stylized model is suf-

ficiently sophisticated to deliver theoretical insight, and is sufficiently relevant to guide empirical

investment decisions.

2.1 Factor Model Setup

To be more concrete, the factor economy has N assets in the investment universe. The N ×1 vector

of excess returns rt follows a reduced-form linear factor model, for t = 1, 2, . . . , T :

rt = α+ βγ + βvt + ut, (1)

where β is an N ×K matrix of factor exposures (with the first column being a vector of 1s), α is

an N × 1 vector of pricing errors, vt is a K × 1 vector of factor innovations with covariance matrix

Σv, γ is a K × 1 vector of risk premia (first entry corresponding to the column of 1s is the zero

beta rate), and ut is a vector of idiosyncratic returns, independent of vt, with a diagonal covariance

matrix Σu. While approximate factor models become more prevalent following Chamberlain and

Rothschild (1983), allowing for off-diagonal entries in the covariance matrix Σu would introduce

additional statistical obstacles due to the estimation of large covariance matrix for inference on

alpha and for building optimal portfolios. For simplicity, we illustrate the economic insight of limits

to arbitrage using a strict factor model, leaving discussions on violations of model assumptions later.

Throughout we will consider asymptotic limits as N and T increase while K is fixed. To facilitate

our asymptotic analysis along the cross-sectional dimension, N , we regard high dimensional objects

such as α, β, and Σu as random variables drawn from some cross-sectional distributions, whereas γ

and Σv are regarded as deterministic parameters, since their dimensions are fixed. We assume that
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α has mean zero, and is cross-sectionally independent of β, and that β has full column rank and is

pervasive. These conditions are essential for identification of γ in a model that allows for pricing

errors.

We formalize the conditions below.

Assumption 1. For each N ≥ 1, the following conditions hold:

(a) ‖β‖MAX .P 1, and λmin(βᵀβ) &P N .3

(b) vt is i.i.d. across t, E(vt) = 0, and its covariance matrix Σv satisfies 1 . λmin(Σv) ≤
λmax(Σv) . 1.

(c) (αi, σi) is i.i.d. across i, where σ2
i = (Σu)i,i. Moreover, E(αi|σi) = 0 and E

(
maxi:i≤N α

2
i

)
=

o(1).

(d) ui,t = σiεi,t, where εi,t is i.i.d. across (i, t), independent of Σu, satisfying E(εi,t) = 0 and

Var(εi,t) = 1. In addition, Σu satisfies 1 .P λmin(Σu) ≤ λmax(Σu) .P 1.

(e) The pricing errors α, factors v, factor loadings β, and idiosyncratic errors u are, conditionally

on Σu, mutually independent.

Assumption 1 (a) and (b) are commonly seen in the literature of factor models. In particular,

the assumption on λmin(βᵀβ) requires that all factors are pervasive.4 Condition (c) on α implies

that Var(αi) = E(α2
i ) = o(1). As will become clear (from footnote 8), a diminishing variance on α

is necessary for precluding near-arbitrage opportunities in Ross’ APT. (c) and (d) together suggest

that the alpha signals in our model are weak, in that as N increases their magnitudes shrink towards

0, whereas volatilities are bounded from above and from below. More importantly, the assumptions

imply that learning about alpha is a more arduous task than learning about volatilities.

There are at least three variations of the factor model (1), depending on what econometricians

assume to be observable. The most common setup in academic finance literature imposes that factors

are observable as in e.g., Fama and French (1993).5 The second setting, which has gained more

popularity recently since its debut in Connor and Korajczyk (1986), assumes that factors are latent.

The third setting, arguably most prevalent among practitioners, is the MSCI Barra model originally

proposed by Rosenberg (1974), where factor exposures, i.e., characteristics, are assumed observable.

The advantage of the last model lies in the fact that estimating a large number of (potentially)

3For a matrix A, we use ‖A‖ and ‖A‖MAX = maxi,j |aij | to denote the operator norm (or L2 norm) and the L∞
norm of A on the vector space. We use C to denote a generic constant that may change from line to line. We use
λmin(A) and λmax(A) to denote the minimum and maximum eigenvalues of A. We also use the notation a . b to
denote a ≤ Cb for some constant C > 0, a .P b to denote a = OP(b), a h b if a . b and b . a, and use a hP b
accordingly.

4See, e.g., Assumption I.1 of Giglio and Xiu (2021). While our theoretical results may extend to certain weak
factor settings, this is not our emphasis here.

5This is different from saying factor innovations, vt, are observable. The setting of observable factors typically
involves another equation that ft = µ + vt, where µ are the population means of the observed factors ft, which are
not necessarily identical to the factor risk premia, γ. Since µ is an unknown parameter, vt is not observable.

8



time-varying stock-level factor exposures is statistically inefficient and computationally expensive,

as opposed to directly specifying risk exposures as (linear functions of) observable characteristics.6

Our core theoretical results below (e.g., Theorem 1) directly apply to all three cases aforemen-

tioned. In our empirical analysis we will adopt the third framework most convenient for modeling

individual stocks. This makes our analysis highly relevant for practitioners. When it comes to port-

folios as test assets, we could adopt either of the first two settings, depending on which factor model

is of interest (latent or say, Fama-French factor models), because there are no natural observable

proxies for portfolios’ betas empirically.

2.2 Feasible Near-Arbitrage Opportunities

Building upon the insight of Ross (1976), Huberman (1982) and Ingersoll (1984) established the

concept of near-arbitrage, which can be formalized in a more general setting as below:

Definition 1. A portfolio strategy w at time t is said to generate a near-arbitrage under a sequence

of data-generating processes, such as (1), defined in a filtered probability space (Ω,F , {Ft}t≥0,P), if

it satisfies w ∈ Ft, and along some diverging subsequence,7 with probability approaching one,

Var(wᵀrt+1|Ft)→ 0, E(wᵀrt+1|Ft) ≥ δ > 0.

Intuitively, no near-arbitrage means there exists no sequence of portfolios that earn positive

expected returns with vanishing risks. Under conditions similar to those in Assumption 1, Ingersoll

(1984) established that a sufficient and necessary condition for the absence of near-arbitrage is that

S? =

√
αᵀΣ−1

u α .P 1. (3)

S? is the theoretically optimal Sharpe ratio arbitrageurs can achieve in this economy using a

portfolio strategy that has zero exposure to factor risks, namely, a “statistical arbitrage” strategy

in the jargon of practitioners. This result suggests that moderate mispricing in the form of nonzero

alphas is permitted in an economy without near-arbitrage opportunities, but there cannot be too

many alphas that are too large, to the extent that S? explodes along some diverging sequence.8

6Strictly speaking, the MSCI Barra model is cast in a conditional version of (1):

rt = αt−1 + βt−1γt−1 + βt−1vt + ut, (2)

where βt is a vector of observed characteristics and γt−1 is a vector of time-varying risk premia. Analyzing this
conditional model will not yield additional economic insight relative to the unconditional model with respect to
the theoretical limit of arbitrage. Our theory remains valid with β replaced by βt−1 without much change. This
model is overly parametrized that parameters are not identifiable without additional restrictions. Some examples of
parsimonious conditional factor models include Connor et al. (2012), Gagliardini et al. (2016), and Kelly et al. (2019).

7We adopt the same subsequence definition as that used in Ingersoll (1984). The subsequence typically depends
on the count of investment opportunities, i.e., N , though we do not need make this explicit in this definition. For
simplicity of notation and without ambiguity, we omit the dependence of w on N and t.

8Using equation (3) and the fact that αᵀα .P α
ᵀλmin(Σ−1

u )α .P α
ᵀΣ−1

u α .P 1, we have E(α2
i ) = o(1) by the law

of large numbers.
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To achieve this optimal Sharpe ratio, arbitrageurs should hold a portfolio with weights given by

w? = Σ−1
u α, according to Ingersoll (1984).9 Under the rational expectation assumption, arbitrageurs

(agents in this model) know the true (population) parameters: α and Σu. In reality, however, the

true parameters are blind to arbitrageurs as they can only learn these parameters from a finite

sample of data. This learning effect is sometimes harmless since it can be expected that when

the sample size is large enough, the true parameters are (asymptotically) revealed, and hence the

predictions under rational expectation hold approximately. Fundamentally, this phenomenon is due

to the assumption that the learning problem in the limiting experiment becomes increasingly simpler

as the sample size increases.

In the current context, the difficulty of the learning problem also hinges on the number of

investment opportunities, N . As N increases, it becomes increasingly difficult for arbitrageurs to

determine which among all assets truly have nonzero alphas for a given sample size, T . If the

learning problem remains difficult as N and T increase, the learning effect persists, which could

lead to distinct limiting implications as opposed to the rational expectation case. It turns out

that the rational expectation limit S? is only relevant for rather restrictive scenarios. In more

realistic settings, e.g., N is much larger than T , the optimal Sharpe ratio arbitrageurs can achieve

without factor exposures is far smaller than S? because of their inability to make error-free inference.

Therefore, the condition (3) could be excessively restrictive in such scenarios.

To illustrate this intuition, we consider a simple and specific example.

Example 1. Suppose the cross-section of alphas is drawn from the following distribution:

αi
i.i.d.∼


µ with prob. ρ/2

−µ with prob. ρ/2

0 with prob. 1− ρ
, 1 ≤ i ≤ N, (4)

where µ ≥ 0 and 0 ≤ ρ ≤ 1, and they potentially vary with N and T . In addition, we also assume

β = 0, Σu = σ2IN , for some σ > 0.

In this example, µ dictates the strength of alphas, ρ describes how rare alphas are, whereas

σ is a nuisance parameter. By modeling parameters µ and ρ as functions of the sample size and

dimensions of the investment set, we can accurately characterize the difficulty of the finite sample

problem arbitrageurs are facing.10 To emphasize the role of signal strength and count, we impose in

this example that all assets share the same alpha distribution and the same idiosyncratic variance.

9In Ingersoll (1984), α is defined to be the cross-sectional projection of the expected returns onto β in the population
model such that αᵀΣ−1

u β = 0. In this paper, we assume instead that α is random, satisfying E(αᵀβ) = 0, and hence
in our setting the optimal strategy is given by w? = MβΣ−1

u α, where Mβ = IN − β(βᵀβ)−1βᵀ and IN is the N × N
identity matrix. w? achieves the Sharpe ratio S? (asymptotically as N increases).

10Adopting a drifting sequence for parameters is a common trick in econometrics to provide more accurate finite
sample approximations. As Bekker (1994) put, “in evaluating the results, it is important to keep in mind that the
parameter sequence is designed to make the asymptotic distribution fit the finite sample distribution better. It is
completely irrelevant whether or not further sampling will lead to samples conforming to this sequence or not.”
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Now suppose, more specifically, that the magnitude of (µ, ρ) satisfies

µ h T−1/2 and ρ h N−1/2. (5)

This condition (5) implies that the signal strength µ vanishes as the sample size T increases and

the signal percentage count ρ decays as the investment universe expands (N → ∞). This setup is

used to approximate a reality with only a small portion of assets having a nonzero yet small alpha.

σ is assumed a fixed constant, since in reality idiosyncratic risks never vanish, whereas alphas can

be small driven by competition among arbitrageurs. This model rests on an uncommon territory in

the existing literature of asset pricing: weak and rare alphas. In fact, the classical no near-arbitrage

condition (3) imposes, implicitly, weakness or rareness on alphas; otherwise, if alphas are strong

and dense, αᵀα would explode rather rapidly. Even in the current setting, in light of the fact that

E(αᵀα) = ρµ2N , we still have αᵀα
p−→∞ as long as N1/2/T →∞. In other words, a near-arbitrage

opportunity arises according to (3), with a strategy w = σ−2α.

However, the statistical obstacle prevents arbitrageurs from having this “free lunch.” In general,

it is only possible to recover any element of alpha up to some estimation error of magnitude T−1/2.11

Since by design the true alpha is of the same order of magnitude as its level of statistical uncertainty,

i.e., µ h T−1/2, it is impossible for arbitrageurs to determine precisely which assets among all have

nonzero alpha.

For illustration purpose, suppose that arbitrageurs adopt the strategy ŵ = σ−2α̂, replacing α in

w with α̂ = r̄ = α+ ū.12 Out of sample, this portfolio’s conditional expected return and conditional

variance can be written as:

E
(
σ−2 (α+ ū)ᵀ (α+ ut)|Ft−1

)
= σ−2(αᵀα+ ūᵀα),

Var
(
σ−2 (α+ ū)ᵀ (α+ ut)|Ft−1

)
= σ−2(αᵀα+ 2αᵀū+ ūᵀū),

where ut denotes a future return at t, that shares the same distribution as {us}s≤t−1, but is indepen-

dent of ū which belongs to the information set up to t− 1, Ft−1. The resulting squared conditional

Sharpe ratio is given by:

S2 =
σ−4(αᵀα+ ūᵀα)2

σ−2(αᵀα+ 2αᵀū+ ūᵀū)
.P T

−1 → 0, (7)

11Giglio et al. (2021) develop the asymptotic normality result for alpha estimates via a Fama-MacBeth procedure
in various scenarios, in which factors are (partially) observable or latent whereas β is unknown. The CLTs in these
scenarios share the same form: for any 1 ≤ i ≤ N ,

√
T (α̂i − αi)

d−→ N (0, σ2
i (1 + γᵀ(Σv)−1γ)), (6)

where σ2
i is the ith entry of Σu. In the case that β is observable (but factors are not), we can show that the CLT has

a similar form except that the scalar (1 + γᵀ(Σv)−1γ) disappears.
12For any time series of random vector at, we use ā to denote its sample average. As we will point out later in the

paper, this strategy ŵ, which we will denote by ŵCSR, fails to achieve the optimal Sharpe ratio in all scenarios. We
will discuss the optimal strategy in Section 2.5.
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where we use the fact that ūᵀū hP N/T . In other words, this portfolio achieves a Sharpe ratio equal

to zero asymptotically.

Is it possible to find a trading strategy better than ŵ that achieves a non-vanishing Sharpe ratio?

In fact, as we will show later, in this setting, the optimal Sharpe ratio among all feasible trading

strategies arbitrageurs adopt, denoted by SOPT, vanishes asymptotically as N,T →∞, even though

the infeasible optimal Sharpe ratio S? → ∞ if N1/2/T → ∞. The gap between SOPT and S?, as

shown by this example, is enormous.

We say a strategy is feasible if it only uses observable data, together with some necessary statis-

tical method for inference. We formalize the definition of a feasible portfolio strategy below:

Definition 2. A portfolio strategy ŵ is said to be feasible at time t, if it is a function of observables

from t− T + 1 to t, where T is the sample size.

In other words, a feasible strategy needs be adapted to the filtration (information set) generated

by observables. The performance of a feasible portfolio depends on the difficulty of the statistical

learning problem. In many cases, the statistical uncertainty vanishes as the sample size increases, so

that learning makes no difference as opposed to rational expectations asymptotically. The learning

problem in the above example, however, remains difficult as N and T increase, to the extent that

the learning effect does not diminish in the limit and that the asymptotic limit is distinct from what

rational expectation assumption implies. As we show below, the learning problem in practice is

often rather difficult, hence the optimal arbitrage Sharpe ratio achievable is expected to be much

smaller than S?.

2.3 Upper Bound on Feasible Sharpe Ratios

We now demonstrate the impact of the feasibility constraint on the optimal arbitrage portfolio. For

any feasible strategy ŵ, its (conditional) Sharpe ratio can be written as:

S(ŵ) := E(ŵᵀrt+1|Ft)/Var(ŵᵀrt+1|Ft)1/2.

Arbitrageurs, in our setting, strive to find a feasible strategy that maximizes S(ŵ).

The next theorem provides an upper bound on S(ŵ):

Theorem 1. Suppose that rt follows (1) and that Assumption 1 holds. For any feasible portfolio

weight ŵ, its Sharpe ratio, S(ŵ), satisfies, as N →∞:

S(ŵ) ≤
(
S(G)2 + γᵀΣ−1

v γ
)1/2

+ oP(1), with S(G)2 := E(α|G)ᵀΣ−1
u E(α|G), (8)

where G is the information set generated by {(rs, β, vs,Σu) : t−T + 1 ≤ s ≤ t}. If, in addition, that,

ŵ satisfies that ŵᵀβ = 0, that is, the portfolio is factor-neutral, then

S(ŵ) ≤ S(G) + oP(1). (9)

12



It is known that γᵀΣ−1
v γ is the optimal Sharpe ratio earned from factor portfolios. Theorem 1

further points out that S(G) is an upper bound for Sharpe ratios of all feasible portfolio strategies

that have no factor exposures. It is E(α|G), the posterior estimate of the pricing errors, α, that

dictates the optimal feasible Sharpe ratio for arbitrageurs, rather than α themselves. In fact, it

holds by the definition of S(G) that

E
(
S(G)2

)
≤ E

(
αᵀΣ−1

u α
)
,

with the equality holds only when E(α|G) = α almost surely, where the right-hand side corresponds

to the infeasible scenario in which arbitrageurs can learn α perfectly using their information set,

which echoes (3), the result given by Huberman (1982).13

Theorem 1 also provides one solution to a long standing problem in optimal portfolio allocation

in the presence of parameter uncertainty. It has been known in the literature that the plug-in mean-

variance portfolio using sample mean and sample covariance matrix performs poorly. Assuming

returns are normally distributed, Kan and Zhou (2007) studied the expected performance of the

plug-in mean-variance portfolio and found its Sharpe ratio is smaller than that of the infeasible

Sharpe ratio. Nevertheless, they did not provide an upper bound of the feasible optimal Sharpe

ratio in the presence of parameter uncertainty. Our result establishes such a bound in a general

factor model setup. In what follows we will discuss different portfolio formation strategies as well

as propose a new and optimal strategy that achieves this upper bound.

In light of Definitions 1 and 2, we immediately obtain a sufficient condition of the absence of

near-arbitrage with feasible strategies:

Corollary 1. Suppose the same assumptions as in Theorem 1 hold. For any given return-generating

process satisfying (1), there exists no feasible strategy ŵ that leads to a near-arbitrage, if

S(G) .P 1, as N →∞. (10)

The form of S(G) in Theorem 1 appears that arbitrageurs rely on the information set G, which

embodies perfect knowledge of factors, vt, and their exposures, β, in addition to past asset returns,

rt. Moreover, arbitrageurs appear to have perfect knowledge of the (diagonal) covariance matrix of

idiosyncratic errors, Σu. In fact, the upper bound in (8) still holds if arbitrageurs are endowed with

less information, because for any information sets G′ and G such that G′ ⊆ G, we have E(S(G′)2) ≤
E(S(G)2). And yet, we will show in Section 2.5 that S(G) is in fact achievable by a feasible strategy

we construct, which only assumes knowledge of β and rt – the setting in which factor exposures are

observable, implying that the no near-arbitrage bound in (10) is sufficient and necessary.

The reason that Σu plays no significant role is that in our model idiosyncratic variances do not

vanish as N and T increase, unlike alphas. This assumption makes sense empirically, because alphas

13For ease of discussion, we assume alpha is random. This difference with Huberman (1982) by itself does not affect
any economic or statistical conclusions we draw in this paper.
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are (potentially) small and rare, driven by competition among arbitrageurs, whereas idiosyncratic

risks never diminish. Consequently, detecting alphas is more challenging as opposed to estimating

idiosyncratic variances, and hence the latter plays a secondary (and negligible) role as opposed to

the former in the limit of arbitrage.

2.4 Explicit Formula of the Sharpe Ratio Bound

To gain insight on S(G), we seek a more explicit expression in this section. For that purpose, we

need impose an additional assumption:

Assumption 2. For each N ≥ 1, the following conditions hold:

(a) si := αi/σi is independent of σi and satisfies E(s2
i1{|si|≥cN}) ≤ cNN

−1 for some sequence

cN → 0.

(b) εi,t follows a standard normal distribution.

Assumption 2(a) imposes some restriction on the dependence of αi and σi. It is thereby stronger

than Assumption 1(c) that imposes no such restriction. Under Assumption 2, α̂i/σi ∼ N (si, 1),

where si is i.i.d., following some prior distribution. Conditional on σi, the problem is translated

into the classical problem of estimating a high-dimensional vector of normal means in empirical

Bayes, see, e.g., Efron (2019). Together with a technical condition on the tail behavior of si and the

normality assumption on εi,t, we can derive a more explicit expression of S(G).

Proposition 1. Suppose that rt follows (1) and Assumptions 1 and 2 hold. We define

ψ(a) =
E
(
siφ(a− T 1/2si)

)
E
(
φ(a− T 1/2si)

) ,
where φ(·) is the normal pdf function, and E(·) is the expectation taken with respect to the cross-

sectional distributions of (αi, σi). Then it holds that

E(αi|G) = σiψ
(
ẑi
)
,

where z̃i = T 1/2(αi + ūi)/σi, ū is the average of ut based on a sample of size T . Moreover, we have

S(G) = SOPT + oP(1), with SOPT =

(
N

∫
ψ(a)2p(a)da

)1/2

,

where p(a) = E
(
φ(a− T 1/2si)

)
is the probability distribution function of z̃i.

The first part of Proposition 1 provides a closed-form formula for E(αi|G). Under the stated

conditions on the independence across i, α̂i = αi + ū and σi, are sufficient summaries of G for αi,

so that E(αi|G) = E(αi|α̂i, σi). Furthermore, by exploiting Assumption 2(a), we can further write
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E(αi|α̂i, σi) = σiE(si|α̂i, σi) = σiE(si|z̃i).14 The latter expectation can then be evaluated with the

help of the normality assumption on ui,t. The second part of this proposition aims to simplify S(G)

on the basis of E(αi|G) according to Theorem 1, which needs this technical condition on the tail

behavior of the cross-sectional distribution of si given by Assumption 2(a).

Applying this result, we compare the optimal Sharpe ratio SOPT with S? of Huberman (1982)

in Example 1.

Corollary 2. Suppose that the same assumptions as in Proposition 1 hold. In addition, we assume

alpha follows (4) as in Example 1. Then we have S? = σ−1µ(ρN)1/2 + oP(1). Further, assuming

that σ−1µ(ρN)1/2 does not vanish, then it holds that SOPT ≤ (1− ε)σ−1µ(ρN)1/2 for some ε > 0, if

and only if

T 1/2µ/σ −
√
−2 log ρ . 1. (11)

Corollary 2 suggests that when T 1/2µ/σ is large that the constraint (11) is violated, S? hP S
OPT,

that is, in the limit, the learning effect does not play any role, so that arbitrageurs in this scenario

achieve the same optimal Sharpe ratio as in Huberman (1982). Furthermore, the rareness parameter

ρ does not make much difference if T 1/2µ/σ gets sufficiently large. That said, if ρ approaches to

zero so fast to the extent that
√
−2 log ρ dominates T 1/2µ/σ, that is, alpha is extremely rare and

sufficiently weak, the learning problem becomes rather challenging and hence SOPT is dominated

by S? in the limit, resulting in a strictly smaller Sharpe ratio than the infeasible Sharpe ratio in the

classical case.

To give a concrete example of Corollary 2, consider an alternative DGP assumption as opposed

to (5):15

µ h N−λ and ρ > 0 is fixed. (12)

In this scenario, (S?)2 hP N
1−2λ, which explodes unless λ > 1/2. If further assuming that N/T →

ψ > 0, then the left-hand-side of condition (11) is of order N1/2−λ∨1, so that (11) holds if and only

if λ ≥ 1/2. Therefore, λ < 1/2 is not consistent with absence of (feasible) near arbitrage in that

the infeasible Sharpe ratio explodes, while in the mean time the feasible Sharpe ratio approximately

equals the infeasible Sharpe ratio (by Corollary 2) and hence explodes. If λ > 1/2, the infeasible

Sharpe ratio (and hence the feasible one) vanishes, which does not seem like an economically plausible

case. If we think that arbitrageur activity is required to prevent substantial mispricing, then a setting

where mispricing disappears asymptotically even if the frictions faced by arbitrageurs are very large

is not plausible. This suggests that under this DGP (12), the only economically plausible case with

absence of near-arbitrage is λ = 1/2. That is, λ can be thought as determined in equilibrium,

in which there are substantial asset demand distortions such that mispricing in the absence of

14This equality relies on the result that conditional on α̂i/σi, αi/σi is independent of σi. We impose this condition
primarily for clarity of exposition and simplicity of Algorithm 1 below.

15It is easy to show that the setup (12) satisfies all assumptions of Proposition 1 for all fixed λ > 0.
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arbitrageur action would be non-negligible asymptotically, and arbitrageurs are aggressive enough

so that near-arbitrage opportunities do not exist asymptotically.

We now illustrate the behavior of SOPT numerically and verify the theoretical predictions of

Corollary 2 using the DGP specified in Example 1. Figure 1 reports the Sharpe ratio, SOPT, of

optimal feasible arbitrage portfolios for a range of µ/σ and ρ values in the case of N = 1, 000 and

T = 20 years. Recall that according to model (4), a ρ percentage of assets have alphas with a

Sharpe ratio µ/σ. That is, ρ characterizes the rareness of the alpha signal, whereas µ/σ captures

its strength. We intentionally choose a wide range of µ/σ (with annualized Sharpe ratios from 0.11

to 10.95) and ρ (from 0.12% to 50%) to shed light on the dependence landscape of Sharpe ratios on

signal weakness and rareness, despite that some of the resulting portfolio Sharpe ratios (the top left

conner of Figure 1) are unrealistically high. Note that when µ/σ×
√

12 hits 0.44, its corresponding

t-statistic based on a 20-year sample exceeds 1.96, the typical t-hurdle for a standard student-t test.

The pattern of Sharpe ratios agrees with our intuition and theoretical predictions. For any fixed

ρ, as the alpha signal weakens (i.e., µ/σ decreases), the optimal Sharpe ratio drops. The same is

true if we decrease the signal count (i.e., ρ vanishes), for any fixed value of µ/σ. The arbitrageur’s

learning problem is the easiest when signal is strong and count is large (top left conner), and the

most challenging towards the right bottom corner, where the optimal Sharpe ratios drop to near 0.
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Figure 1: Optimal Sharpe Ratios (SOPT) of Feasible Arbitrage Portfolios

Note: The figure reports optimal Sharpe ratios of feasible arbitrage portfolios in model (4), in which a 100 × ρ%

of assets have alphas that correspond to an annualized Sharpe ratio µ/σ ×
√

12.

The reported Sharpe ratios on Figure 1 are only a fraction of the corresponding (infeasible)

Sharpe ratios, S? =
√
αᵀ(Σu)−1α = µ/σ

√
ρN , as shown by Figure 2. The pattern we see from

Figure 2 agrees with theoretical predictions of Corollary 2. When the annualized Sharpe ratio

16



µ/σ ×
√

12 is larger than 2.74, regardless of the values of ρ, the signal-to-noise ratio of the learning

problem is sufficiently strong that the statistical limit to arbitrage does not matter much, and

hence SOPT/S? is close to 1. Nonetheless, this regime is irrelevant in practice, since it is mostly

associated with unrealistically high Sharpe ratios (see Figure 1). In contrast, as µ/σ diminishes,

the gap between S? and SOPT widens. In almost all empirically relevant scenarios, S? is largely

exaggerated.
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Figure 2: Ratios between SOPT and S?

Note: The figure reports the ratios of optimal Sharpe ratios between feasible and infeasible arbitrage portfolios.

The simulation setting is based on model (4), in which a 100 × ρ% of assets have alphas that correspond to an

annualized Sharpe ratio µ/σ ×
√

12.

2.5 Constructing the Optimal Arbitrage Portfolio

In our previous discussion, we have shown in Theorem 1 that the optimal Sharpe ratio for any

feasible strategy is bounded by S(G). In Proposition 1, we have shown that S(G) ≈ SOPT under

additional assumptions. Corollary 2 further demonstrates that the optimal Sharpe ratio can vary

with sequences of DGPs. In light of this, the optimal strategy should depend on the unobserved

DGP as well, which poses a serious challenge to arbitrageurs.

It turns out, nevertheless, that arbitrageurs can construct a uniformly optimal strategy, which

achieves SOPT over a large class of data generating precesses, without perfect knowledge of the true

DGP. We describe this portfolio strategy as “all weather” in that it can be applied in all scenarios

of DGPs under consideration. Moreover, the fact that this strategy achieves SOPT implies that the

Sharpe ratio upper bound we derive is sharp.

We build this strategy in the setting where factors are latent but factor exposures are observable,
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since this is the case we analyze empirically.

Algorithm 1 (Constructing the Optimal Arbitrage Portfolio).

Inputs: rt, t ∈ T = {t− T + 1, . . . , t} and β.

S1. We we construct cross-sectional regression estimates of alpha, idiosyncratic volatilities, and

the induced t-statistics, for each i = 1, 2, . . . , N :

α̂ = T−1
∑
s∈T

Mβrs, σ̂2
i = T−1

∑
s∈T

(
(Mβrs)i − α̂i

)2
, and ẑi = T 1/2α̂i/σ̂i.

S2 We non-parametrically estimate the marginal density of t-statistics using Gaussian kernel

function φ(x) and bandwidth kN ∼ (logN)−1:

p̂(a) =
1

NkN

∑
i

φ
( ẑi − a

kN

)
,

S3. We construct an estimate of ψ(a) by plugging p̂(a) into the Tweedie’s formula (Robbins

(1956)):

ψ̂(a) =
1√
T
a+

1 + k2
N√

T

d

da
log p̂(a).

S4. We choose the arbitrage portfolio weights as ŵOPT = Mβw̆, with w̆i = ψ̂(ẑi)/σ̂i.

Outputs: ŵOPT.

As we have discussed in footnote 9, the optimal strategy in the case that arbitrageurs know the

true DGP is given by

w? = MβΣ−1
u α, (13)

where Mβ = IN − β(βᵀβ)−1βᵀ. Intuitively, part of the construction in (13), Σ−1
u α, is the optimal

allocation to the ex-factor returns, α+ut = rt−β(γ+vt), based on a simple mean-variance analysis.

Multiplying by Mβ in (13) simply eliminates factor exposures in rt, because Mβrt ≈ α+ut. In light

of this and Theorem 1,

wOPT = MβΣ−1
u E(α|G) (14)

appears a reasonable target for portfolio weights when arbitragers do not observe true alphas in the

DGP.

Our objective is to construct portfolio weights that approximate the optimal feasible weight

given by (14). As explained by the discussion following Proposition 1, the key result is E(αi|G) =

σiE(si|α̂i/σi) = σiE(si|z̃i) = σiψ(z̃i), thanks to the independence assumption between si and σi. We

thereby need an estimator of the conditional expectation function ψ(a). Because z̃i ∼ N (
√
Tsi, 1),

the Tweedie’s formula allows us to connect conditional expectation ψ(a) to p(a), the marginal

density of z̃i, as follows

ψ(a) =
1√
T
a+

1√
T

d

da
log p(a).
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In light of this connection, we rely on the empirical Bayes method, following Brown and Greenshtein

(2009). Concretely, we conduct in Step S2 kernel density estimation of p(a), which, combined

with Tweedie’s formula, leads to estimate of the conditional expectation function in Step S3. The

additional factor (1 + k2
N ) is to correct the bias arising from the estimation error embedded in p̂(a).

With the estimate of ψ(a), the optimal weights on ex-factor returns are constructed as w̆. This, in

turn, leads to the optimal weight estimates, ŵOPT, on original input asset returns.

An essential step towards uniform optimality is that we consolidate information of assets with

similar ẑi, as in Step S2, to obtain an estimate of the conditional expectation of their signal strength,

using which we obtain their optimal portfolio weights. This strategy outperforms the alternatives,

some of which directly use estimated alphas as if these estimates are not susceptible to errors even

when they are rather weak, or simply ignore the contribution of all weaker signals. Like any machine

learning method, the proposed approach requires a tuning parameter kN , which can be selected in

a validation sample.

The following theorem demonstrates the optimality of ŵOPT:

Theorem 2. Let P denote the collection of all data-generating processes under which rt follows

(1), and Assumptions 1 and 2 hold. In addition, suppose that Nd . T . Nd′ for fixed constants

d > 1/2 and d′ < 1. We denote the Sharpe ratio generated by the portfolio strategy ŵOPT as

ŜOPT := E(rᵀt+1ŵ
OPT|Ft)/Var(rᵀt+1ŵ

OPT|Ft)1/2. Then it holds that ŵOPT achieves, asymptotically,

the upper bound SOPT uniformly over all sequences of data-generating processes. That is, for any

ε > 0,

lim
N,T→∞

sup
P∈P

P
(∣∣ŜOPT − SOPT

∣∣ ≥ εSOPT + ε
)

= 0.

Theorem 2 concludes that in the context of a linear factor model, arbitrageurs can construct

this strategy, without any knowledge besides past returns and risk exposures (beta), to achieve the

maximal Sharpe ratio over all feasible trading strategies that have zero exposure to factor risks.

This Sharpe ratio precisely characterizes the limit of feasible arbitrages in economic terms.

The term εSOPT + ε accommodates both small and large values of SOPT. If SOPT . 1, then ε

dominates and the estimation error inside the probability is characterized by the absolute difference

between ŜOPT and SOPT. Otherwise, if SOPT →∞, the estimation error is described in percentage

terms. This is necessary because we simultaneously consider a large class of models.

With Theorem 2, we establish the necessity for the no near-arbitrage condition given by (10).

Corollary 3. Suppose the same assumptions as in Theorem 2 hold. The portfolio weights by ŵOPT

yields a near-arbitrage strategy under any sequences of data-generating processes for which condition

(10) does not hold.

We have shown that arbitrageurs can construct an optimal strategy that realizes SOPT. Now

suppose that the equilibrium “cost” of implementing an arbitrage is C in an economy with statistical

limit of arbitrage. In equilibrium, SOPT = C, otherwise arbitrageurs can trade until it is no longer
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profitable to do so. We can thereby interpret ŜOPT as an empirical estimate of the arbitrage cost,

which we will estimate empirically.

2.6 Estimating Optimal Infeasible Sharpe Ratio

We are also interested in estimating the optimal infeasible Sharpe ratio, S?, which can be perceived

as the optimal Sharpe ratio from an outside econometrician’s point of view, and yet cannot be

realized by a feasible portfolio. Existing literature on testing APT often construct test statistics

in the spirit of Gibbons et al. (1989), which are effectively based on S?, see, e.g., Pesaran and

Yamagata (2017) and Fan et al. (2015). While such tests are powerful and may lead to discoveries

of alpha signals, they are not relevant for arbitrageurs in that arbitrageurs may not construct a

feasible portfolio to profit from these statistical discoveries.

To construct an estimator for S?, we consider the following choice motivated from its sample

analog:

S̃? =
(
r̄ᵀMβΣ̂−1

u Mβ r̄
)1/2

, (15)

where r̄ = T−1
∑

t∈T rt, σ̂
2
i = T−1

∑
t∈T (ri,t − r̄i)2, and Σ̂u = diag(σ̂2

1, σ̂
2
2, . . . , σ̂

2
N ).

Unfortunately, this estimator has a non-vanishing asymptotic bias for certain data generating

processes we consider, as we will show later. To fix this issue, we propose a new estimator that is

uniformly consistent:

Ŝ? =
(
r̄ᵀMβΣ̂−1

u Mβ r̄ −N/T
)1/2

. (16)

The second estimator again takes the form of a summation over individual squared Sharpe ratios,

but it eliminates the term that will be dominated by the estimation bias under some data generating

processes. The next proposition summarizes the asymptotic properties of both estimators.

Proposition 2. Suppose that rt follows (1) and that Assumption 1 holds. Assume that

E(α2
i1{|αi|≥cN}) ≤ cNN

−1, T . N , T−1N1/2 logN ≤ cN , for some sequence cN → 0, and that

εi,t has finite eighth moment. Then we have∣∣∣Ŝ? − S?∣∣∣/(1 + S?
)

= oP

(
T−1/2N1/4

√
logN

)
,∣∣∣S̃? − ((S?)2 +NT−1

)1/2∣∣∣/(1 + S?
)

= oP

(
T−1N1/2 logN

)
.

Similar to Theorem 2, the estimation error is relative when S? dominates one asymptotically,

and in absolute terms if S? is dominated by one.16 This accommodates a large class of models, some

of which have an exploding or a shrinking S?. While it is possible to estimate S?, it is not possible

to build a portfolio that realize it, unless the signal-to-noise ratio is sufficiently large such that

S? = SOPT. Empirically, the difference between Ŝ? and ŜOPT thereby tells us the signal strength

in the data.

16Obviously, the threshold 1.0 can be replaced by any fixed constant.
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2.7 Alternative Strategies for Arbitrage Portfolios

Algorithm 1 suggests a relatively sophisticated procedure that distinguishes weaker and strong

signals using t-statistics before constructing, separately, the optimal weights for these signals. In

this section, we study several alternative methods, neither of which can achieve optimality uniformly

across all DGPs we consider, but they are simpler and somewhat prevalent in practice. The contrast

among these strategies helps illustrate their pros and cons in different scenarios.

2.7.1 Cross-Sectional Regression

The conventional approach to estimating alphas is through the cross-sectional regression:

α̂ = (βᵀβ)−1 βᵀr̄,

with which the arbitrage portfolio weights can be constructed directly as:

ŵCSR = MβΣ̂−1
u α̂. (17)

This choice of portfolio weight is the sample analog of the optimal weight given by (13).

We now exploit Example 1 to illustrate the pros and cons of the CSR strategy. We will point

out that it is not optimal in all DGPs. For this purpose, we only need focus on the case in which

returns are driven by idiosyncratic errors and alpha. For convenience, we adopt a simplified volatility

estimator: Σ̂u = σ̂2IN , where σ̂2 is averaged over all volatility estimates, because in this example,

all assets share the same volatility. This further simplifies the analysis because the scaling factor,

σ̂2, is cancelled out, and hence σ̂2 does not play any role in the portfolio’s Sharpe ratio, ŜCSR.

Proposition 3. Suppose that rt follows (1) with β = 0, ui,t ∼ N (0, σ2), and α following (4) as in

Example 1. We also assume µ . 1. The Sharpe ratio of the arbitrage portfolio, whose weights are

given by ŵCSR = σ̂−2α̂, satisfies ŜCSR − SCSR = oP(1), where

ŜCSR = E(rᵀt+1ŵ
CSR|Ft)/Var(rᵀt+1ŵ

CSR|Ft)1/2, SCSR =
N1/2ρµ2σ−2

(T−1 + ρµ2σ−2)1/2
.

Figure 3 plots the ratio of SCSR against SOPT for a range of parameters. Evidently, this former

is dominated by the latter when alpha signals are both sparse and strong. This dominance regime

is highlighted in black numbers on the heatmap from Figure 3. As µ/σ ×
√

12 approaches 1.0 (a

vertical line) from the right or the upper left corner, the gap between the two Sharpe ratios shrinks.

Intuitively, this approach takes all signals directly without distinguishing the insignificant ones

from the significant ones. Consequently, even fake signals (pure noise) are assigned non-zero weights,

which, in turn, hurts the portfolio’s performance. On the other hand, the CSR strategy can achieve

optimality when the strong signals are abundant (so that portfolio weights allocated to noise are

inconsequential) or when all signals are weak (so that they do not differ too much from fake ones).
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The latter case is interesting, as it also suggests that simply ignoring weaker signals is not optimal.

That said, Figure 1 shows that the DGPs with respect to parameters for which the cross-sectional

regression approach is strongly dominated by our optimal strategy are associated with realistic

Sharpe ratios.
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Figure 3: Ratios between SCSR and SOPT

Note: The figure reports the ratios between the Sharpe ratios of the OLS based portfolio and the feasible optimal

arbitrage portfolio. The simulation setting is based on model (4), in which a 100 × ρ% of assets have alphas that

correspond to an annualized Sharpe ratio µ/σ ×
√

12.

The CSR approach is a simple benchmark as it does not rely on any advanced statistical tech-

niques to detect signals or distinguish their strength. The strategy we discuss next is more advanced,

in that it controls false discoveries among selected strong signals using the B-H procedure proposed

by Benjamini and Hochberg (1995).

2.7.2 False Discovery Rate Control

From the statistical point of view, we can formalize the search for alpha as a multiple testing

problem. Say, there are N assets potentially with nonzero α, and for each i, we can define a null

hypothesis: Hi
0 : αi = 0, so that rejecting this null leads to a discovery of αi. With multiple testing

comes the concern of data snooping, meaning that a large fraction of tests that appear positive are

in fact due to chance. One sensible approach is to control the false discovery rate (FDR), instead

of the size of individual tests, a proposal advocated by Barras et al. (2010), Bajgrowicz and Scaillet

(2012), and Harvey et al. (2016) in different asset pricing contexts.

The B-H procedure is often adopted to control FDR in multiple testing problems. Giglio et al.

(2021) have proved its validity in a general factor model setting for alpha detection. Below we
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describe the algorithm for constructing alpha estimates, which will be used as inputs to the con-

struction of an arbitrage portfolio.

Algorithm 2 (The B-H based Alpha Selection). Let {pi : i = 1, . . . , N} be the p-values of the t-test

statistics corresponding to the cross-sectional regression estimates of alpha.

S1. Sort in ascending order the collection of p-values, with the sorted p-values given by p(1) ≤
. . . ≤ p(N).

S2. For i = 1, . . . , N , reject Hi
0 : αi = 0, if pi ≤ p

(k̂)
, where k̂ = max{i ≤ N : p(i) ≤ τi/N}, for

any pre-determined level τ , say, 5%.

Similar to the case of ŜOPT, we adopt a sample-splitting method. We divide the entire sample

T into two subsamples S and S′. We apply B-H to select signals, whose p-values are based on

t-statistics z̆ using S, and then construct portfolio weights with alpha estimates ᾰ′ using S′:

α̂BH
i (τ) = ᾰ′i1{pi≤p(k̂)}. (18)

The B-H procedure guarantees (in expectation) that at least a fraction (1− τ) of selected assets

have nonzero alphas, regardless of the actual percentage of alphas in the data generating process.

Effectively, it imposes a hard-thresholding procedure on the alpha estimates, replacing less significant

alphas by zero. Similar to (17), the optimal portfolio weights are thus given by:

ŵBH = MβΣ̂−1
u α̂BH(τ). (19)

Controlling the false discovery rate on top of the CSR estimates is intuitively appealing, but doing

so incurs a potential loss of power, leading to less investment opportunities. Our focus is on optimal

portfolio construction instead of false discovery control. The next proposition shows that in the

context of Example 1, arbitrageurs who adopt the B-H based alpha estimator cannot achieve optimal

portfolio for a large class of DGP sequences.

Proposition 4. Suppose that rt follows (1) with β = 0, ui,t ∼ N (0, σ2), and α following (4) as

in Example 1. We assume µ, ρ . Nd with fixed d < 0, and |S| h |S′| h T . The Sharpe ratio of

the arbitrage portfolio with weights given by ŵBH = σ̂−2α̂BH(τ) satisfies ŜBH = SBH + oP(1 + SBH),

where17

ŜBH = E(rᵀt+1ŵ
BH|Ft)/Var(rᵀt+1ŵ

BH|Ft)1/2

is the Sharpe ratio, and

SBH = µσ−1
√
ρNΦ(|S|1/2µ/σ − z∗),

17If ŵBH = 0, i.e., no asset is selected, we set ŜBH = 0 by convention.
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where Φ(·) is the normal cumulative distribution function, and z∗ is the positive solution of the

equation

2(1− τ(1− ρ))Φ(−z) = τρΦ(T 1/2µ/σ − z). (20)

We note that SBH is upper bounded by
√

1− τSOPT, where τ is the pre-determined level that

controls the false discovery rate. Intuitively, as τ increases, the B-H procedure tends to fail in

guarding against fake signals, so that the performance of the B-H portfolio would deteriorate.

Similar to CSR, the B-H procedure cannot achieve the optimal Sharpe ratio, as shown by Figure

4. The scenarios that B-H achieves optimality correspond to the white values on Figure 4, where

the border of the dominant region is located near the vertical line at µ/σ
√

12 = 2.19. Intuitively,

the B-H is effective in singling out strong signals, so it leads to almost optimal portfolios as long

as all signals are strong. However, when signals are weak, the B-H procedure, which amounts

to hard-thresholding, performs worse than the cross-sectional regression. As shown by Figure 1,

even if alphas are individually weak, their empirical relevance should not be ignored because their

collective contribution to the portfolio’s Sharpe ratio can be highly non-trivial. The B-H approach is

overly conservative compared to alternatives in this parameter regime, even though B-H remains a

preferable approach to selecting truly significant alphas and controlling false discoveries. In contrast,

the optimal arbitrage portfolio exploits information embedded in all alpha estimates, including false

positives, beyond the set of significant ones selected via B-H procedure. This result also demonstrates

a clear distinction between two objectives: alpha testing and portfolio construction, the objectives

of which do not always align.

The CSR and the B-H approaches represent two typical strategies in practice. The former trades

all signals without distinguishing their strength, whereas the latter only trades the stronger signals.

Neither approach always achieves optimality.

2.7.3 Shrinkage Approaches

The analysis above suggests that we can construct the optimal portfolio out of the ex-factor returns,

while imposing regularization on portfolio weights, before rewriting the regularized portfolio weights

in terms of raw returns (i.e., multiplying the weights by Mβ). Regularizing portfolio weights amounts

to imposing priors directly on the alpha estimates. To see this, we adopt a shrinkage approach, when

constructing arbitrage portfolios on residual returns:

arg max
w
{wᵀα̂− 1

2
wᵀΣ̂uw − pλ(w)},

where pλ(w) = λ ‖w‖1 or λ ‖w‖22, for some λ > 0. Since Σ̂u is diagonal, the closed-form solution

is ψq(α̂, Σ̂u, λ), where q = 1 corresponds to the LASSO penalty and q = 2 the ridge, and for

i = 1, 2, . . . , N ,(
ψ1(α̂, Σ̂u, λ)

)
i

= (σ̂i)
−2sgn(α̂i)(|α̂i| − λ)+,

(
ψ2(α̂, Σ̂u, λ)

)
i

=
(
(σ̂i)

2 + λ
)−1

α̂i.
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Figure 4: Ratios between SBH and SOPT

Note: The figure reports the ratios between the Sharpe ratios of the multiple testing based portfolio (via B-H

procedure) and the feasible optimal arbitrage portfolio. The simulation setting is based on model (4), in which a

100× ρ% of assets have alphas that correspond to an annualized Sharpe ratio µ/σ ×
√

12.

This leads to the optimal portfolio weight on rt:
18

ŵq = Mβψq(α̂, Σ̂u, λ), q = 1, 2.

Depending on the magnitude of λ, the LASSO approach replaces all smaller signals by zero and

shrinks the larger signals by λ in absolute terms. In other words, the LASSO approach is the

soft-thresholding alternative to the B-H method. In contrast, the ridge penalty shrinks all signals

proportionally with a shrinkage factor depending on σ̂2
i . Like the above analysis, when specialized

to example (1), we can adopt Σ̂u = σ̂2IN , in which case ridge becomes equivalent to CSR! This

“embedded” shrinkage effect of CSR explains why it performs well in the case of small signals.

Proposition 5. Suppose that rt follows (1) with β = 0, ui,t ∼ N (0, σ2), and α following (4) as in

Example 1. We assume µ ≤ cN . The Sharpe ratio of the arbitrage portfolio with weights given by

ŵq, denoted as Ŝq for q = 1, 2, satisfies Ŝ1 − SLASSO = oP(1) and Ŝ2 − SCSR = oP(1), where

SLASSO = ρµσ−1N1/2

∫∞
−∞ sgn(x)(T−1/2σ|x| − λ)+φ(T 1/2σ−1µ− x)dx√∫∞

−∞
(
(T−1/2σ|x| − λ)+

)2(
(1− ρ)φ(x) + ρφ(T 1/2σ−1µ− x))

)
dx
,

and SCSR is defined in Proposition 3.

18An alternative strategy is to impose sparsity directly on the portfolio weights with respect to raw returns. While
this approach might be appealing from the transaction cost point of view, it does not associate with an explicit prior
on alpha, hence is more difficult to interpret.
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Proposition 5, along with Proposition 3, provides explicit formula of SLASSO. Figure 5 compares

SLASSO with SOPT. The LASSO approach involves a tuning parameter, which calls for a cross-

validation procedure. We adopt an infeasible and theoretically optimal tuning parameter, λ, that

maximizes SLASSO, making this approach a stronger competitor. Even though Proposition 5 suggests

that LASSO is not uniformly optimal, it performs quite well, achieving the optimal Sharpe ratio in

almost all regimes. Intuitively, when signals are very strong, LASSO behaves like a hard-thresholding

selector, as shrinkage does not play too much a role. When signals are rather weak, LASSO behaves

like Ridge (and hence CSR), because shrinking these signals does not change the fact that they are

almost indistinguishable from noise.
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Figure 5: Ratios between SLASSO and SOPT

Note: The figure reports the ratios between the Sharpe ratios of the LASSO based portfolio and the feasible optimal

arbitrage portfolio. The simulation setting is based on model (4), in which a 100 × ρ% of assets have alphas that

correspond to an annualized Sharpe ratio µ/σ ×
√

12. The tuning parameter λ is selected to maximize SLASSO.

3 Simulation Evidence

This section demonstrates the empirical relevance of our theory via simulations and examines the

finite sample performance of the proposed portfolio strategies.

3.1 Comparison of Portfolio Strategies in Finite Sample

For simplicity and clarity, we simulate a one-factor (CAPM) model of returns given by (1). We

choose the factor risk premium as 5% per year and set the annualized volatility at 25%. We model

the cross-section of betas using a normal distribution with mean 1 and variance 1. Since we focus
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on the arbitrage portfolio, the parameters about the factor component (including the number of

factors) are inconsequential, because factors, if any, are eliminated by Mβ in the first step when

constructing these trading strategies. In addition, we adopt model (4) in Example 1 for the cross-

sectional distribution of alpha, and fix the idiosyncratic volatilities of all assets at σ, since it is α/σ

that determines the signal strength and that there is no need of varying both α and σ in the cross

section.

We now compare the finite sample performance of our portfolio estimators over different DGPs.

For any given parameter value (µ/σ, ρ) in a DGP, we estimate the portfolio weights, ŵOPT, using

our Algorithm 1, and calculate the resulting (theoretical) Sharpe ratio: ŵOPTᵀ
µ/
√
ŵOPTᵀ

Σ−1
u ŵOPT.

We then calculate the average Sharpe ratio over all Monte Carlo repetitions. Our approach re-

quires a tuning parameter kn. For robustness, we report results based on three parameter values

(0.5kn, kn, 2kn) with kn = 0.25. We repeat this exercise for the CSR, B-H, and LASSO methods for

comparison.

In light of Theorem 2, a sensible choice of the estimation error can be written as:

ErrA(µ/σ, ρ) = |ŜA − SOPT|/(1 + SOPT),

where A denotes OPT, CSR, BH, or LASSO, and the dependence of ŜA and SOPT on µ/σ and ρ

is omitted. When SOPT is large (i.e., >> 1), this error is in percentages relative to SOPT; when

SOPT is small (i.e., oP(1)), the error is measured in terms of the absolute difference. The error is

defined this way because SOPT itself can diverge or diminish depending on different parameters in

the simulated DGPs.

Table 1 reports the maximal error over all values of µ/σ and ρ. The results show that OPT

has a smaller error in almost all cases for all tuning parameters than CSR, BH, or LASSO. As T

increases from 10 years to 40 years, the maximum error drops from 0.377 to 0.263 in the case of

N = 1, 000 for kn = 0.25, whereas CSR, BH and LASSO stay above 0.44. The maximal error for

CSR is achieved at the lower left conner of Figure 1, where signals are strong but rare; for BH,

the worst performance occurs around the upper right corner, where many weak signals exist; for

LASSO, the worse is near the bottom but in the middle, where signals are neither too strong nor

too weak.

3.2 Finite Sample Performance of the Infeasible Sharpe Ratio Estimator

Finally, Figure 6 reports the estimation error
∣∣Ŝ?−S?∣∣/(1+S?

)
in simulations. The result confirms

the consistency result given by Proposition 2. The error is relative when S? is large or moderate

(>> 1). We find the relative error is around 1% towards the left top corner. For DGPs near the

bottom right corner of Figure 6, S? vanishes as shown by Figures 1 and 2, the error becomes absolute

(S? << 1) and is moderately small given the sample size and the cross-sectional dimension.
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N = 1, 000, Monthly N = 3, 000, Monthly N = 1, 000, Daily
T = 10 T = 20 T = 40 T = 10 T = 20 T = 40 T = 10 T = 20 T = 40

0.385 0.332 0.289 0.442 0.367 0.320 0.449 0.440 0.408
OPT 0.377 0.309 0.263 0.437 0.333 0.282 0.411 0.382 0.356

0.381 0.282 0.233 0.446 0.318 0.247 0.370 0.334 0.303
CSR 0.540 0.489 0.441 0.618 0.570 0.515 0.537 0.485 0.427
BH 0.742 0.703 0.651 0.814 0.789 0.748 0.760 0.715 0.657
LASSO 0.537 0.488 0.440 0.615 0.568 0.512 0.536 0.483 0.426

Table 1: Sharpe Ratio Comparison in Simulations

Note: This table reports the maximum error, defined by supµ/σ,ρ ErrA(µ/σ, ρ), where A denotes either OPT, or CSR,
or BH, over all values of µ/σ and ρ in Figure 1, for several choices of N , T (in years), and data frequencies. The
first three rows correspond to the OPT approach with three different values of tuning parameters, 0.5kn, kn, and 2kn,
respectively, where kn = 0.25. The BH approach controls false discovery rate at a level 5%. The LASSO approach
uses the optimal (infeasible) tuning parameter that optimizes SLASSO.
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Figure 6: Comparison between Ŝ? and S?

Note: The figure reports the error between Ŝ? and S? defined as
∣∣Ŝ? − S?∣∣/(1 + S?

)
. The simulation setting is

based on model (4), in which a 100×ρ% of assets have αs that correspond to an annualized Sharpe ratio µ/σ×
√

12.

In this experiment, N = 1, 000 and T = 20 years.

4 Empirical Analysis of US Equities

To demonstrate the empirical relevance of the statistical limit of arbitrage, we study US monthly

equity returns from January 1965 to December 2020.
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4.1 Data Preprocessing

We adopt a multi-factor model with 16 characteristics and 11 GICS sectors, which are selected

to incorporate empirical insight from existing asset pricing literature and industry practice. The

selected characteristics include market beta, size, operating profits/book equity, book equity/market

equity, asset growth, momentum, short-term reversal, industry momentum, illiquidity, leverage,

return seasonality, sales growth, accruals, dividend yield, tangibility, and idiosyncratic risk, which

are downloaded directly from the website openassetpricing.com, see Chen and Zimmermann (2020)

for construction details.

We download the monthly return data for individual equities from CRSP. We take a number of

steps to preprocess the data. First, we single out delisted stocks, and attach delisting returns as their

last returns (on the delisting months). Next, we merge the returns data with the aforementioned

characteristics database using permnos. The total number of unique permnos on average per month

is 6,536. We then apply the usual filters (share codes 10 and 11 and exchange codes 1, 2, and 3) to

the database, to eliminate (part of) the sampling periods for stocks that fail to meet these criteria.

The remaining average number of stocks per month is 4,756. For stocks whose returns are missing

for more than 3 months, we eliminate the missing periods, otherwise we fill the missing returns by

zeros.

We now deal with missing characteristics. We start by removing all characteristics data for

any stocks since their delisting months. We then fill missing GICS codes with the corresponding

stocks’ most recent records prior to their missing dates. Stocks without any GICS codes over the

entire sample period are eliminated. If the GICS codes become available later in the sample for

some stocks, their sample prior to the first dates when GICS become available are eliminated, which

mainly occurs prior to 1990. With GICS information, we adopt a two-step procedure to fill in other

missing characteristics. For any missing value in a stock’s characteristic, we fill it with the sector-

wise median of this characteristic each month. If a characteristic’s values are not available for an

entire sector in a certain month, we fill them with this characteristic’s cross-sectional median over

all stocks in this month. After data preprocessing, the final average number of stocks per month is

reduced to 4,067.

The resulting panel is not balanced, because we do not fill in missing data before a stock’s IPO

or after its delisting. Our approach to filling missing data thereby avoids forward-looking bias.

4.2 Model Performance

At the end of each month, we run cross-sectional regressions of next month returns onto the 27

cross-sectional predictors (including the intercept). We do so using all stocks in the current month’s

cross sections. Following Gu et al. (2020), the 16 characteristics are rank-normalized within each

cross-section, alleviating the impact of extreme outliers in characteristics, though this barely changes

any follow-up results.

Figure 7 plots the time series of the cross-sectional regression R2s over time. The R2 has been
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on the decline since the beginning of the sample till 1990s. This coincides with the period when the

number of stocks in the US equity markets increases. The R2s are moderately low, with an average

of 8.25%. The low R2s suggest that a substantial portion of cross-sectional variation of individual

equity returns is idiosyncratic noise. Therefore, learning alphas from residuals of the factor model

is an incredibly difficult statistical task.
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Figure 7: Time-series of the Cross-sectional R2s

4.3 Rare and Weak Alphas

We now study the statistical properties of alphas using the full sample data. For each stock, we

collect its regression residuals and take their average as an estimate for its alpha. We impose that

all residuals have at least 60 observations. This ensures enough sample size for inference on alpha,

although the distribution of alphas’ t-statistics turns out not sensitive to this requirement. Figure 8

provides histograms of the t-statistics and Sharpe ratios for alphas of all 12,415 stocks in our sample

that meet this criterion. Because these stocks have different sample sizes, the histograms of the

Sharpe ratios are not simply the scaled version of the histogram of the t-statistics.

Only 6.35% of the t-statistics exceed 2.0 in magnitude, and more than 0.63% exceed 3.0. This

suggests that truly significant alphas are extremely rare. Moreover, the largest Sharpe ratio of all

individual stocks’ alphas is rather modest, about 1.699. Only 0.505% of the alphas have a Sharpe

ratio greater than 1.0. These summary statistics suggest that rare and weak alpha is perhaps the

most relevant scenario in practice.
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Figure 8: Histograms of the t-Statistics and Sharpe Ratios of Estimated Alphas

Note: The figure provides the histograms of the t-statistics (left) and Sharpe ratios (right) of estimated alphas for

all tickers in our sample with at least 60 months of data. The total number of tickers available is 12,482.

4.4 Performance of Arbitrage Portfolios

Throughout we assume alphas do not vary over time. If alphas are driven by some observable

characteristics, then it is possible to construct a factor using these characteristics via cross-sectional

regressions, which turns “alpha” into risk premia. In this regard, alphas are meaningless without

reference to a specific factor model. Extracting more “factors” out of alphas would lead to even

smaller arbitrage profits.

We now compare arbitrage portfolios based on various strategies, including the optimal strat-

egy, the cross-sectional regression (CSR) approach, the multiple-testing based procedure (BH), and

LASSO approach. The ridge approach is omitted, since it is equivalent to the CSR.

Specifically, at the end of each month, we build optimal portfolio weights using these strategies.

We only invest in stocks with a continuous record for at least 96 months. We rebalance these

portfolios at the end of each month, with weights recalculated using a 120-month rolling window.

Both Lasso and the optimal strategy require a tuning parameter. Out of the 10-year rolling window,

we leave the last 2 years as the validation sample for tuning parameter selection. As expected,

optimal tuning parameter is difficult to select, which undermines the performance of both strategies.

All these strategies yield similar Sharpe ratios. BH and OPT tie for the top of the chart,

yielding 0.497 and 0.496, respectively, followed by CSR that scores 0.450. The LASSO approach

only obtains 0.384. The Sharpe ratios of different strategies are not influenced by risk aversion,

though the cumulative returns are. To compare cumulative returns, we normalize all strategies to

have the same (ex-post) volatility. The resulting time-series of normalized cumulative returns are
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shown in Figure 9.

Closely examining these strategies reveals more insight. BH is highly conservative. Out of 46

years of out-of sample trading months (1975/01 - 2020/12), 289 months have no trading activities.

The largest number of stocks selected for trading in a month is 10, and the average over all non-zero

periods is 2.43. In contrast, CSR trade all stocks that meet our trading criteria, with an average

of 2,366 stocks per month. OPT almost does so, with an average of 2,359. The number of stocks

traded by LASSO is rather volatile, varying between none and all stocks from month to month, with

an average of 757.6 per month. This is likely caused by the noise in the tuning process.
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Figure 9: Normalized Cumulative Returns of Arbitrage Portfolios

Note: This figure compares the cumulative returns of OPT (red dotted), CSR (blue solid), BH (green dot-dashed),

and LASSO (orange dashed) strategies. We normalize all returns by their realized volatilities calculated by the

square root of the sum of the squared returns over the entire sample, only for comparison purpose.

We also calculate the perceived Sharpe ratios using (15), and provide a time-series plot of Ŝ?

in Figure 10. We also compare it with the biased estimates S̃? using (16). We observe a huge gap

between the estimated perceived Sharpe ratios using these formulae. As predicted by Proposition

2, S̃? overestimates S?, though it guarantees positive values. Our estimate S̃? is averaged around

2.55 (we truncate negative estimates by 0), but can sometimes exceed 7.5. These estimates are far

greater than the feasible Sharpe ratios we obtain for any of these strategies. That said, even the

infeasible Sharpe ratios can be as low as 0 for certain periods of the sample. The feasible portfolio

returns seem in agreement with the prediction. For instance, OPT, LASSO, and BH’s cumulative

returns are almost flat post 2010, whereas CSR has negative returns.
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Figure 10: Time Series of Sharpe Ratios

Note: The figure compares naive estimates (orange dashed) and their bias-corrected estimates (blue solid) of the

infeasible Sharpe ratios based on a rolling window of 120 months.

5 Conclusion

Taking stock, our paper provides a new theoretical framework to understanding the implications

of statistical learning in asset pricing. In the age of big data, rational expectations assumption

often fails to retain its relevance in practice, and hence understanding its limitation and the role

of statistical learning is vitally important. We introduce new econometric tools in the spirit of

nonparametric empirical Bayes, which could be adopted in other contexts.

The empirical message should be confined within the context of monthly rebalancing strategies

via linear factor models. The gap between feasible and infeasible Sharpe ratios will further increase

if arbitrageurs face additional statistical challenges, e.g., model misspecification, omitted factors,

weak factors, large non-sparse idiosyncratic covariance matrix, etc. Consequently, the empirical gap

should remain for any arbitrageurs, including those who engage in higher frequency trading or use

more complex nonlinear models.

More broadly, existing literature have documented impressive Sharpe ratios on various machine

learning based trading strategies. Such strategies often rely on ad-hoc model design (e.g., a neural

network with a specific architecture) and tuning parameters selection. In this regard, the empirical

analysis can at best provide a “lower bound” on the performance of machine learning strategies in

investment. Our paper provides a theoretical framework to understand the “upper bound” on the

performance of any strategy in the specific context of arbitrage pricing theory, tying together this

statistical limit with economic rationale.

On a side note, our theoretical and empirical analyses also have implications on the econometric
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analysis in asset pricing. Examining the economic performance of asset pricing models is as impor-

tant as and complementary to statistical tests. The criteria of a good statistical test are primarily

statistical in nature, such as Type I and Type II errors, false discovery rate, etc; whereas in practice,

it is the economic performance that agents in the economy fundamentally care about. There is of-

ten a wedge between these two objectives. For instance, a statistical procedure that guards against

false discovery rate may be overly conservative for investment purpose; rejection by a powerful test

statistic may not necessarily lead to the practical irrelevance of an economic theory. While the asset

pricing literature has seen an explosion of statistical machine learning tools imported from other

areas, we caution against their use without guidance of economics.
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Appendix A Mathematical Proofs

A.1 Proof of Theorem 1 and Proposition 1, and Corollary 2

Proof of Theorem 1. To simplify the notation, we omit the dependence of β, Σ on N , and ŵ on N

and T . All limits are taken as N →∞. The derivation applies to either fixed T or T →∞ together

with N .

We first note that, given (1), conditioning on G is equivalent to conditioning on the information

set generated by

{(αi + ui,s, βi, vs, σi) : t− T + 1 ≤ s ≤ t, i ≤ N}.

According to Assumption 1, conditionally on Σu, {(αi, αi + ui,s) : t− T + 1 ≤ s ≤ t} is independent

of {(αj + uj,s, βj′ , vs) : t− T + 1 ≤ s ≤ t, j, j′ ≤ N, j 6= i}. Therefore, the G-conditional distribution

of αi is the same as the distribution of αi conditional on {αi + ui,s : t − T + 1 ≤ s ≤ t} and

Σu. Because σj is independent with (αi, ui) for j 6= i, the G-conditional distribution of αi is the

same as the the Gi-conditional distribution of αi, where Gi is the information set generated by

{(αi + ui,s, σi) : t− T + 1 ≤ s ≤ t}. Since Gi is independent across i by Assumption 1, we conclude

that, conditionally on G, αi remains independent across i.

Now define E = E(ŵᵀrt+1|Ft)− E(ŵᵀrt+1|G). By the definition of S(ŵ), we have

S(ŵ) = E(ŵᵀrt+1|G)/Var(ŵᵀrt+1|Ft)1/2 + E/Var(ŵᵀrt+1|Ft)1/2. (A.1)
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Since ŵ is G-measurable, it follows that E = ŵᵀ(α − E(α|G)) and that E(E2|G) = ŵᵀVar(α|G)ŵ.

Then, using Chebyshev’s inequality, we have, for all positive fixed ε,

P (|E|/‖ŵ‖ ≥ ε) ≤ E(E2/‖ŵ‖2)/ε2 = E(ŵᵀVar(α|G)ŵ/‖ŵ‖2)/ε2. (A.2)

Because conditionally on G, αi is independent across i, we have Var(α|G)i,j = δi,jVar(αi|G). It

thereby follows that

E(ŵᵀVar(α|G)ŵ/‖ŵ‖2) ≤ E

(
max
i≤N

Var(αi|G)

)
≤ E

(
max
i≤N

α2
i

)
= o(1), (A.3)

where the last step comes from condition (c) of Assumption 1. Combining (A.75) and (A.76), and

using Var(ŵᵀrt+1|Ft) = ŵᵀΣŵ ≥ λmin(Σu)‖ŵ‖2 &P ‖ŵ‖2, we obtain

|E|/Var(ŵᵀrt+1|Ft)1/2 .P |E|/‖ŵ‖ = oP(1). (A.4)

(A.4) and (A.1) lead to

S(ŵ) = ŵᵀE(rt+1|G)(ŵᵀΣŵ)−1/2 + oP(1). (A.5)

Furthermore, applying Cauchy-Schwarz inequality, we obtain

|ŵᵀE(rt+1|G)|2 (ŵᵀΣŵ)−1 ≤ E(rt+1|G)ᵀΣ−1E(rt+1|G). (A.6)

On the other hand, it implies by Woodbury matrix identity and from the fact that Σ = βΣvβ
ᵀ +Σu,

Σ−1 = Σ−1
u − Σ−1

u β(Σ−1
v + βᵀΣ−1

u β)−1βᵀΣ−1
u . (A.7)

By direct calculations, we have

βᵀΣ−1β = ((βᵀΣ−1
u β)−1 + Σv)

−1.

Let H1 = (βᵀΣ−1
u β)−1 and H2 = Σv, and using the fact that (H1 + H2)−1 − H−1

2 = −(H1 +

H2)−1H1H
−1
2 , we have

βᵀΣ−1β − Σ−1
v = −((βᵀΣ−1

u β)−1 + Σv)
−1(βᵀΣ−1

u β)−1Σ−1
v .

Therefore, using the fact that λmin(βᵀβ) &P N and that λmax(Σu) .P 1 in light of condition (a)

and (d) of Assumption 1, we have

λmax((βᵀΣ−1
u β)−1) = λ−1

min(βᵀΣ−1
u β) ≤ λ−1

min(βᵀβ)λmax(Σu) .P N
−1. (A.8)
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Also, note that λmax(Σ−1
v ) = λ−1

min(Σv) . 1, and that

λmax(((βᵀΣ−1
u β)−1 + Σv)

−1) = λ−1
min((βᵀΣ−1

u β)−1 + Σv) ≤ λ−1
min(Σv) . 1,

we have

‖βᵀΣ−1β − Σ−1
v ‖ .P N

−1,

which in turn leads to

γᵀβᵀΣ−1βγ = γᵀΣ−1
v γ + oP(1). (A.9)

Next, we show

E(α|G)ᵀΣ−1βγ = oP(1). (A.10)

Notice that E (E(α|G)|Σ, β) = E (α|Σ, β) = E (α|Σ) = 0 (by conditions (c) and (e) of Assumption

1), and that, conditionally on (Σ, β), E(αi|G) is independent across i. Therefore,

E
((

E(α|G)ᵀΣ−1βγ
)2 |Σ, β) ≤∑

i≤N
E
(
E(αi|G)2|Σ, β

)
max
j≤N

(γᵀβᵀΣ−1)2
j . (A.11)

On the other hand, from (A.7), we obtain

γᵀβᵀΣ−1 = γᵀΣ−1
v (Σ−1

v + βᵀΣ−1
u β)−1βᵀΣ−1

u .

Because of λmin(Σv) & 1, ‖β‖MAX .P 1, ‖Σu‖MAX ≤ ‖Σu‖ .P 1, λmin(Σu) &P 1, Σu is diagonal,

and (A.8), we have

‖γᵀβᵀΣ−1‖MAX .‖(Σ−1
v + βᵀΣ−1

u β)−1‖‖βᵀΣ−1
u ‖MAX .P λmax((βᵀΣ−1

u β)−1) .P N
−1.

Hence, we have, for all positive fixed ε,

P
(
|E(α|G)ᵀΣ−1βγ| ≥ ε|Σ, β

)
≤ E

((
E(α|G)ᵀΣ−1βγ

)2 |Σ, β) /ε2 = oP(1), (A.12)

where the last equality comes from (A.11) and that E
(∑

i≤N E
(
E(αi|G)2|Σ, β

))
≤
∑

i≤N E(α2
i ) =

o(N) by condition (c) of Assumption 1. Since P
(
|E(α|G)ᵀΣ−1βγ| ≥ ε|Σ, β

)
≤ 1 are uniformly

bounded for all N (by definition), we obtain by taking expectations on both sides of (A.12) that,

for all positive fixed ε,

P
(
|E(α|G)ᵀΣ−1βγ| ≥ ε

)
= o(1),

which is equivalent to (A.10).

Finally, we derive

E(α|G)ᵀΣ−1E(α|G) = E(α|G)ᵀΣ−1
u E(α|G) + oP(1). (A.13)
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Following the same derivation for (A.11), we obtain

E
(∥∥E(α|G)ᵀΣ−1

u β
∥∥2

F
|Σ, β

)
≤
∑
i≤N

E
(
E(αi|G)2|Σ, β

)
max
j

(Σ−1
u ββᵀΣ−1

u )j,j .

Because ‖β‖MAX .P 1 and λmin(Σu) &P 1, we have

max
j

(Σ−1
u ββᵀΣ−1

u )j,j . ‖Σ−1
u β‖2MAX .P 1.

Then given the above result that E
(∑

i≤N E
(
E(αi|G)2|Σ, β

))
= o(N), we obtain that

E
(∥∥E(α|G)ᵀΣ−1

u β
∥∥2

F
|Σ, β

)
= oP(N). Therefore, similar to the derivation of (A.10), we obtain

∥∥E(α|G)ᵀΣ−1
u β

∥∥2

F
= oP(N).

On the other hand, using (A.8), we obtain

‖(Σ−1
v + βᵀΣ−1

u β)−1‖ = λ−1
min(Σ−1

v + βᵀΣ−1
u β) ≤ λmax((βᵀΣ−1

u β)−1) .P N
−1. (A.14)

Then, using (A.14), we have

E(α|G)ᵀΣ−1
u β(Σ−1

v + βᵀΣ−1
u β)−1βᵀΣ−1

u E(α|G)

≤
∥∥E(α|G)ᵀΣ−1

u β
∥∥2

F
‖(Σ−1

v + βᵀΣ−1
u β)−1‖ = oP(1),

and hence, in light of (A.7), we obtain (A.13).

Given that E(rt+1|G) = E(α|G) + βγ, it follows from (A.9), (A.10), and (A.13) that

E(rt+1|G)ᵀΣ−1E(rt+1|G) = E(α|G)ᵀΣ−1
u E(α|G) + γᵀΣ−1

v γ + oP(1).

In light of (A.6), we conclude the proof of the first statement.

Furthermore, if ŵᵀβ = 0, then it follows that ŵᵀrt = ŵᵀ(α+ut) and ŵᵀΣŵ = ŵᵀΣuŵ. Equation

(A.5) then becomes

S(ŵ) = ŵᵀE(α|G)(ŵᵀΣuŵ)−1/2 + oP(1). (A.15)

Similar to (A.6), a direct application of Cauchy-Schwarz inequality

|ŵᵀE(α|G)|2 (ŵᵀΣuŵ)−1 ≤ E(α|G)ᵀΣ−1
u E(α|G) = S(G)2, (A.16)

which concludes the proof.

Proof of Proposition 1. Step 1. We have established in the beginning of the proof of Theorem 1 that

the G-conditional distribution of αi is the same as the Gi-conditional distribution of αi, where Gi is
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the information set generated by {(αi + ui,s) : t− T + 1 ≤ s ≤ t} and σi. Note that ui,s is centered

normal, we have that the conditional probability density of {r∗i,s := αi + ui,s, t − T + 1 ≤ s ≤ t}
given αi and σi, denoted by p(r∗i |αi, σi), is

p(r∗i |αi, σi) =
∏

t−T+1≤s≤t
σ−1
i φ

(
r∗i,s − αi

σi

)
= φ(T 1/2σ−1

i (r̄∗i − αi))f(r∗i ).

Here r̄∗i = T−1
∑

t−T+1≤s≤t r
∗
i,s and f(r∗i ) is a function of r∗i that does not depend on αi. Hence,

applying Bayes’ theorem, we have

E(αi|G) = E(αi|Gi) = σiE(si|Gi) = σi

∫
xp(si = x|r∗i , σi)dx

= σi

∫
x

p(r∗i |si = x, σi)p(si = x|σi)∫
p(r∗i |si = x′, σi)p(si = x′|σi)dx′

dx

= σi

∫
x

p(r∗i |si = x, σi)ps(x)∫
p(r∗i |si = x′, σi)ps(x′)dx′

dx

= σi

∫
x

φ(ẑi − T 1/2x)ps(x)∫
φ(ẑi − T 1/2x′)ps(x′)dx′

dx = σiψ(ẑi),

where ẑi = T 1/2σ−1
i r̄∗i , ps(·) is the marginal density of si that is invariant across i, and we use the

fact that si and σi are independent, given by condition (a) of Assumption 2. This concludes the

proof of the first statement.

Step 2. Apparently, ẑi = T 1/2σ−1
i (αi + ūi) is i.i.d. across i, whose conditional distribution given

(αi, σi) is normal, it follows that its unconditional density function p(a) = E(φ(a − T 1/2si)). By

direction calculation and the definition of SOPT in the statement of the proposition, we have

E(E(αi|G)ᵀΣ−1
u E(αi|G)) =

∑
i

E
(
E(si|G)2

)
= N

∫
ψ(a)2p(a)da =

(
SOPT

)2
. (A.17)

Now we study S(G) = E(αi|G)ᵀΣ−1
u E(αi|G) =

∑
i E(si|G)2. Using the fact that a2 − b2 = (a− b)2 +

2b(a− b), we have

E
(∣∣E(si1{|si|≤cN}|G)2 − E(si|G)2

∣∣)
≤ E

(
E(si1{|si|>cN}|G)2

)
+ 2E

(∣∣E(si|G)E(si1{|si|>cN}|G)
∣∣)

≤ E(s2
i1{|si|>cN}) + 2

√
E (E(si|G)2) E

(
E(si1{|si|>cN}|G)2

)
≤ E(s2

i1{|si|>cN}) + 2
√

E (E(si|G)2) E(s2
i1{|si|>cN})

≤ cNN
−1 +

√
E (E(si|G)2) cNN−1, (A.18)
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where the last step comes from condition (a) of Assumption 2. Then we have

E

(∣∣∣∣∣∑
i

E(si1{|si|≤cN}|G)2 −
∑
i

E(si|G)2

∣∣∣∣∣
)

≤
∑
i

E
(∣∣E(si1{|si|≤cN}|G)2 − E(si|G)2

∣∣)
≤ cN +

√∑
i

E (E(si|G)2) cN = o
(
1 + SOPT

)
, (A.19)

where the second inequality is a direct result of (A.18), and the last estimate is given by (A.17).

From (A.19) and (A.17), it follows, respectively, using Markov’s inequality and triangle inequality

that ∑
i

E(si1{|si|≤cN}|G)2 =
∑
i

E(si|G)2 + oP

(
1 + SOPT

)
, (A.20)

E

(∑
i

E(si1{|si|≤cN}|G)2

)
=
(
SOPT

)2
+ o

(
1 + SOPT

)
. (A.21)

Further, we have

Var

(∑
i

E(si1{|si|≤cN}|G)2

)
=

∑
i

Var
(
E(si1{|si|≤cN}|G)2

)
≤ c2

N

∑
i

E
(
E(si1{|si|≤cN}|G)2

)
= o

(
1 +

(
SOPT

)2)
. (A.22)

For the first line, we use that E(si1{|si|≤cN}|G) is independent across i. The second line is obvious

as |si|1{|si|≤cN} ≤ cN . The last line comes from (A.21). Combining (A.21) and (A.22), we obtain

∑
i

E(si1{|si|≤cN}|G)2 =
(
SOPT

)2
+ o

(
1 + SOPT

)
+ oP

(
1 +

(
SOPT

)2)1/2
.

Along with (A.20), we obtain∑
i

E(si|G)2 =
(
SOPT

)2
+ oP

(
1 + SOPT

)
.

In light of the definition of S(G), and the fact that

((
SOPT

)2
+ oP

(
1 + SOPT

))1/2
= SOPT + oP(1),

we conclude the proof.

Proof of Corollary 2. Because of the tail condition E(α2
i1{|αi|≥cN}) ≤ cNN

−1 for some sequence
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cN → 0, we have

E

∣∣∣∣αᵀα−
∑
i

α2
i1{|αi|<cN}

∣∣∣∣ = E

∣∣∣∣∑
i

α2
i1{|αi|≥cN}

∣∣∣∣ = o(1),

which, by Markov’s inequality and triangle inequality, respectively, leads to

αᵀα =
∑
i

α2
i1{|αi|<cN} + oP(1), E

(∑
i

α2
i1{|αi|<cN}

)
= µ2ρN. (A.23)

On the other hand, it holds that

Var

(∑
i

α2
i1{|αi|<cN}

)
≤
∑
i

E(α4
i1{|αi|<cN}) ≤ c

2
N

∑
i

E(α2
i ) = c2

Nµ
2ρN. (A.24)

Combining (A.23) and (A.24), we obtain

αᵀα = µ2ρN + oP(1 + µ
√
ρN).

As a result, it holds that

S? = σ−1
√
αᵀα = σ−1µ(ρN)1/2 + oP(1). (A.25)

Further, in light of the explicit distribution of α in Example 1, we have

ψ(a) =
µρφ(a− T 1/2µ/σ)− µρφ(a+ T 1/2µ/σ)

(2− 2ρ)φ(a) + ρφ(a− T 1/2µ/σ) + ρφ(a+ T 1/2µ/σ)
, (A.26)

(
SOPT

)2
=

µρN

2σ2

∫
ψ(a)(φ(a− T 1/2µ/σ)− φ(a+ T 1/2µ/σ))da. (A.27)

Suppose that T 1/2µσ−1 −
√
−2 log ρ ≤ C <∞. Then we have

sup
a≥C

ρφ(a)

φ(a− T 1/2µ/σ)
= exp

(
log ρ+ T 1/2µσ−1

(
1

2
T 1/2µσ−1 − C

))
≤ exp

(
log ρ+

1

2

(√
−2 log ρ+ C

)(√
−2 log ρ− C

))
≤ 1. (A.28)

On the other hand, in light of (A.26) and (A.27), we have

(
SOPT

)2
=

µρN

σ2

∫
ψ(a)φ(a− T 1/2µ/σ)da

≤ µρN

σ2

∫
µρφ(a− T 1/2µ/σ)

(2− 2ρ)φ(a) + ρφ(a− T 1/2µ/σ)
φ(a− T 1/2µ/σ)da

=
µ2ρN

σ2

∫
ρφ(a)

(2− 2ρ)φ(a− T 1/2µ/σ) + ρφ(a)
φ(a)da.
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We hence obtain from (A.28) that, for N sufficiently large,

(
SOPT

)2 ≤ µ2ρN

σ2

(∫
a≥C

1

3− 2ρ
φ(a)da+

∫
a≤C

φ(a)da

)
≤ µ2ρN

σ2

(
1− 1

2
Φ(−C)

)
.

This proves the “if” part, given (A.25) and that µ2ρN/σ2 does not vanish. Now suppose T 1/2µσ−1−
√
−2 log ρ→∞. Then, for all fixed x > 0, we have, for sufficiently large N ,

sup
a:|a|≤x

φ(a+ T 1/2µ/σ)

ρφ(a)
= exp

(
− log ρ− T 1/2µσ−1

(
1

2
T 1/2µσ−1 − x

))
≤ exp

(
− log ρ− 1

2

(√
−2 log ρ+ c−1

N

)(√
−2 log ρ+ c−1

N

))
≤ exp

(
− c−2

N /2
)
→ 0, (A.29)

sup
a:|a|≤x

φ(a+ 2T 1/2µ/σ)

φ(a)
= exp

(
− 2T 1/2µσ−1(T 1/2µσ−1 − x)

)
→ 0. (A.30)

Given (A.26), it holds that

ψ
(
a+ T 1/2µ/σ

)
= µ

1− φ(a+2T 1/2µ/σ)
φ(a)

1 + (2−2ρ)φ(a+T 1/2µ/σ)
ρφ(a) + φ(a+2T 1/2µ/σ)

φ(a)

.

Substituting (A.30) into the numerator, and (A.29) and (A.30) into the denominator, we obtain

that, for all fixed x > 0,

sup
a:|a|≤x

∣∣∣µ−1ψ
(
a+ T 1/2µ/σ

)
− 1
∣∣∣→ 0. (A.31)

Since the integrand of (A.27) is always positive and even in a, it holds that, for all fixed x > 0,

(
SOPT

)2 ≥ µρN

σ2

∫
|a−T 1/2µ/σ|≤x

ψ(a)(φ(a− T 1/2µ/σ)− φ(a+ T 1/2µ/σ))da

≥ µρN

σ2

∫
|a−T 1/2µ/σ|≤x

ψ(a)φ(a− T 1/2µ/σ)(1− cN )da

≥ µρN

σ2

∫
|a−T 1/2µ/σ|≤x

µφ(a− T 1/2µ/σ)(1− cN )da

≥ µ2ρN

σ2
(1− cN − 2Φ(−x)).

Here the second inequality comes from (A.30), the third inequality is a result of (A.31), and the last

inequality is obvious. Because this result holds for all fixed x > 0, the “only if” part is proved.

A.2 Proof of Theorem 2

Given the length of the proof, a briefly explanation is warranted to clarify the key ideas and structure.

The whole proof is organized into 5 steps. Steps 1 - 4 demonstrate that the distance between
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the conditional expectation ψ, which we recall stands for Σ
−1/2
u E(α|G), and the estimate ψ̂ :=

(ψ̂(ẑ1), . . . , ψ̂(ẑN ))ᵀ, measured by L2 norm, is small compared to SOPT. This leads to that the

Sharpe ratio generated by ŵOPT = MβΣ
−1/2
u ψ̂ converges to SOPT, proved in the last step.

We note that, because of the rare and weak nature of alphas, E(αi|G) converges to zero in prob-

ability for each individual i, despite their large collective contribution to Sharpe ratio. Therefore,

we need instead the L2 norm of errors involved in ψ̂ to be converging to zero.

Step 1. Throughout the proof, we use the following notation, introduced in the statement of

Proposition 1,

z̃i = T−1/2
∑
s∈T

(si + εi,s), p(a) = E(φ(a− T 1/2si)), ψ(a) =

∫
xφ(a− T 1/2x)ps(x)dx

p(a)
. (A.32)

As in that statement, p(a) is the density of z̃i, and ψ(a) is the expectation of si, conditional on

z̃i = a. We also write for convenience s̃i := T−1/2z̃i.

Intuitively, for assets with large z̃i, s̃i is a relatively precisely estimate the true si. In contrast, for

assets with small z̃i, more likely z̃i is driven by noise. As a result, we introduce B = {i ≤ N : |z̃i| ≤
k̃N} to separate the two cases, where k̃N = k−2

N . Moreover, we set ψ̂ and ψ as the N -dimensional

vectors with entries ψ̂i := ψ̂(ẑi) and ψi := ψ(z̃i). It holds that

‖ψ̂ − ψ‖2 ≤
∑
i∈B

(ψ̂i − ψi)2 +
∑
i∈Bc

(ψ̂i − ψi)2. (A.33)

The majority of the proof (steps 2 - 4) is to establish that ψ̂ constructed by us estimates conditional

expectation vector ψ sufficiently precisely in the following sense:

‖ψ̂ − ψ‖2 = oP

(
1 +

(
SOPT

)2)
. (A.34)

The last step proves optimality of our portfolio strategy based on the above result. We end this

step by noting that (the last part of) Proposition 1 states

‖ψ‖ = S(G) = SOPT + oP(1). (A.35)

Step 2. This step control the magnitude of
∑

i∈B(ψ̂i − ψi)2 of (A.33). It does so by showing∑
i∈Bc

(ψi − s̃i)2 = oP

(
1 +

(
SOPT

)2)
and

∑
i∈Bc

(ψ̂i − s̃i)2 = oP

(
1 +

(
SOPT

)2)
. (A.36)

Since ψi := ψ(z̃i), to bound
∑

i∈Bc(ψi − s̃i)2, we show that |ψ(a)− T−1/2a| is small. On the other

hand, Tweedie’s formula reads

ψ(a)− T−1/2a = T−1/2 p
′(a)

p(a)
. (A.37)
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Moreover, we have, for all positive sequence bN and all a,

|p′(a)| ≤
∫
|T 1/2x− a|φ(T 1/2x− a)ps(x)dx

≤ bN

∫
|T 1/2x−a|≤bN

φ(T 1/2x− a)ps(x)dx+ sup
x:|T 1/2x−a|>bN

|T 1/2x− a|φ(T 1/2x− a)

≤ bNp(a) + sup
y:|y|>bN

|y| exp(−y2/2). (A.38)

The second inequality comes from the ps(x), as a density, integrates to one. Then, choosing bN that

satisfies bN & (logN)d with d > 1/2 and bN = o(k̃N ), which is always possible, we obtain, for all a,

|p′(a)| ≤ cN k̃Np(a) + cNN
−2. (A.39)

It hence holds that

max
i

|p′(z̃i)|
p(z̃i)

.P sup
a

|p′(a)|
p(a)

1{p(a)≥N−3/2} ≤ cN k̃N . (A.40)

The first inequality comes from(B.154) of Lemma B3. The second directly follows from (A.39) (note

that T = o(N) by assumption). Combining (A.40) and (A.37), we obtain

P((s̃i − ψ(z̃i))
2 ≤ cNT−1k̃2

N ,∀i ≤ N) ≥ 1− cN . (A.41)

As a result, ∑
i∈Bc

(s̃i − ψ(z̃i))
2 .P cNT

−1k̃2
N |Bc| ≤ cN

∑
i∈Bc

s̃2
i .P cN

∑
i∈Bc

ψ(z̃i)
2. (A.42)

Here the first inequality is simply (A.41), the second holds since s̃2
i ≥ T−1k̃2

N for all i ∈ Bc by

definition, and the last inequality is a direct implication of the first two. Given (A.42), we obtain

the first part of (A.36) by noting
∑

i∈Bc ψ(z̃i)
2 .P

(
SOPT

)2
+ 1 due to (A.35).

Now we establish the second part of (A.36). By construction we have

ψ̂(a)− T−1/2a = T−1/2 p̂
′(a)

p̂(a)
, with p̂(a) =

1

NkN

∑
i

φ

(
ẑi − a
kN

)
. (A.43)

Similar to (A.38), we have, for all positive sequence bN and all a,

|p̂′(a)| ≤ 1

Nk2
N

∑
i

|ẑi − a|
kN

φ

(
ẑi − a
kN

)
≤ 1

Nk2
N

∑
i:|ẑi−a|/kN≤bN

|ẑi − a|
kN

φ

(
ẑi − a
kN

)
+

1

k2
N

sup
i:|ẑi−a|/kN>bN

|ẑi − a|
kN

φ

(
ẑi − a
kN

)

≤ bN
kN

p̂(a) +
1

k2
N

sup
y:|y|>bN

|y| exp(−y2/2).

Choosing bN that satisfies bN & (logN)d with d > 1/2 and bN = o(k̃NkN ), which is always possible,
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we obtain, for all a,

|p̂′(a)| ≤ cN k̃N p̂(a) + cNN
−2. (A.44)

Therefore, it holds that

max
i

|p̂′(ẑi)|
p̂(ẑi)

≤ cN k̃N , (A.45)

which comes from (A.44) and that p̂(ẑi) ≥ 1
NkN

for all i. As a result, we obtain the second part of

(A.36):∑
i∈Bc

(ψ̂i − s̃i)2 ≤ cNT−1|Bc|k̃2
N + T−1|Bc|max

i≤N
|ẑi − z̃i|2 ≤ cNT−1|Bc|k̃2

N .P cN
(
SOPT

)2
+ cN .

Here the first inequality is simply substituting (A.45) into (A.43), the second inequality comes from

maxi≤N |ẑi − z̃i| ≤ cN k̃N by Lemma B2, the last inequality holds by (A.35) and (the last two

inequalities of) (A.42).

Step 3. To analyze
∑

i∈B(ψ̂i − ψi)2 of (A.33), we introduce an auxiliary function:

ψ̄(a) =

∫
xφ((a− T 1/2x)/v)ps(x)dx∫
φ((a− T 1/2x)/v)ps(x)dx

, with v :=
√

1 + k2
N . (A.46)

ψ̄(a) is essentially the expectation of si, conditional on ži = a, where ži ∼ N (T 1/2si, v
2), i.e., ži has

slightly more noisy than z̃i. The goal is to establish∑
i∈B

(ψi − ψ̄(z̃i))
2 = oP

(
1 +

(
SOPT

)2)
and

∑
i∈B

(ψ̂i − ψ̄(z̃i))
2 = oP

(
1 +

(
SOPT

)2)
. (A.47)

Then the triangle inequality would give us the desired bound on
∑

i∈B(ψ̂i − ψi)2. The current step

proves the first part, whereas the next step will be devoted to show the second part.

We use p̄(a) and π̄(a) to denote the denominator and numerator of ψ̄(a) as in (A.46), and use

π(a) to denote the numerator of ψ(a) as in (A.32). The goal is to show that p̄(a) and π̄(a) are,

respectively, close to p(a) and π(a). We first note that φ(y/v) and φ(y) are close in that, for all y,

|φ(y/v)− φ(y)| ≤ sup
y:|y|≤k−1

N

|φ(y/v)− φ(y)|+ sup
y:|y|>k−1

N

|φ(y/v) + φ(y)|

≤ cNk
−1
N φ(y) sup

y:|y|≤k−1
N

|y/v − y|+ cNN
−2 ≤ cNφ(y) + cNN

−2. (A.48)

Here we use Lemma B4 (choose j = 0) and that |v−1 − 1| ∼ k2
N . Using (A.48), we directly obtain

that, for all a,

|p̄(a)− p(a)| ≤
∫
|φ((a− T 1/2x)/v)− φ(a− T 1/2x)|ps(x)dx
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≤ cN

∫
φ(a− T 1/2x)ps(x)dx+ cNN

−2 = cNp(a) + cNN
−2. (A.49)

Now we bound the difference |π(a) − π̄(a)|. Because ps(x) is a even function, we note that, for all

a ≥ 0,

π(a) =

∫ ∞
0

xφ̄(|a|, x)ps(x)dx, and π̄(a) =

∫ ∞
0

xφ̄(a/v, x/v)ps(x)dx, (A.50)

where

φ̄(a, x) := φ(a− T 1/2x)− φ(a+ T 1/2x) = φ(a− T 1/2x)(1− e−2T 1/2xa).

Since |(1−e−y)−(1−e−y/v)| ≤ cN (1−ey) for all y ≥ 0, it follows from (A.48) and direct calculations

that, for all a ≥ 0 and x ≥ 0,

|φ̄(a/y, x/y)− φ̄(a, x)| ≤ cN φ̄(a, x) + cNN
−2. (A.51)

Substituting (A.51) into (A.50), we obtain, for all a ≥ 0,

|π̄(a)− π(a)| ≤ cN |π(a)|+ cNN
−2

∫ ∞
0

xps(s)dx ≤ |π(a)|+ cNN
−2. (A.52)

Here the last inequality holds by E(|s|) ≤
√

E(s2) ≤ cN due to condition (a) of Assumption 2.

Because π(a) and π̄(a) are both odd functions in a due to that ps(x) is a even function of x, (A.52)

apparently holds for all a.

To establish from (A.49) and (A.52) that ψ̄(a) and ψ(a) are close, we set A := {a : |a| ≤
k̃N , p(a) ≥ N−2}. Then we obtain that, for all a ∈ A,

|ψ̄(a)− ψ(a)| =

∣∣∣∣ π̄(a)

p̄(a)
− π(a)

p̄(a)

∣∣∣∣+

∣∣∣∣π(a)

p̄(a)
− π(a)

p(a)

∣∣∣∣
≤ (1 + cN )

|π̄(a)− π(a)|
p(a)

+ cN
|π(a)|
p(a)

≤ cN
N−2

p(a)
+ cNψ(a). (A.53)

Here the first equality is obvious, the first inequality comes from the lower bound of p(a) (by the

definition of A) and (A.49), the second inequality is a result of (A.52). From (A.53), it follows that,

for all a satisfying a ∈ A,

|ψ̄(a)− ψ(a)|2 ≤ cN
N−2

p(a)
+ cNψ(a)2. (A.54)

where we use Cauchy-Schwarz inequality and the lower bound of p(a). Therefore, we arrive at

N

∫
A
|ψ̄(a)− ψ(a)|2p(a)da ≤ cN + cNN

∫ ∞
−∞

ψ(a)2p(a)da ≤ cN + cN
(
SOPT

)2
, (A.55)

which comes from (A.54) and that
∫
A da ≤ 2k̃N . Therefore, using Chebyshev’s inequality and
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comparing the definitions of sets A and B, we obtain∑
i∈B

(ψi − ψ̄(z̃i))
2
1{p(z̃i)≥N−2} .P E

∑
i∈B

(ψi − ψ̄(z̃i))
2
1{p(z̃i)≥N−2}

= N

∫
A
|ψ̄(a)− ψ(a)|2p(a)da ≤ cN + cN

(
SOPT

)2
,

where the last inequality holds by (A.55). Given (B.154) of Lemma B3, we obtain the first part of

(A.47).

Step 4. This step proves the second part of (A.47), i.e., we bound
∑

i∈B(ψ̂i − ψ̄(z̃i))
2. We

introduce p̃(z) and ψ̃(z) that mimick p̂(z) and ψ̂(z) by replacing the data input z̃i with ẑi:

p̃(z) =
1

NkN

∑
i

φ

(
z̃i − z
kN

)
, and ψ̃(z) =

1√
T
z +

v2

√
T

p̃′(z)

p̃(z)
. (A.56)

Then we can decompose the quantity of interest:∑
i∈B

(ψ̂i − ψ̄(z̃i))
2 ≤

∑
i∈B

(ψ̃(z̃i)− ψ̄(z̃i))
2 +

∑
i∈B

(ψ̂(ẑi)− ψ̃(z̃i))
2. (A.57)

We first show that
∑

i∈B(ψ̃(z̃i)− ψ̄(z̃i))
2 is small. Since we have p̃(z̃i) ≥ 1

NkN
for all i, symmetric

to the derivation of (A.45), we have

max
i

p̃′(z̃i)

p̃(z̃i)
≤ cN k̃N . (A.58)

On the other hand, symmetric to the derivation of (A.40), we obtain

max
i

p̄′(z̃i)

p̄(z̃i)
.P max

i

p̄′(a)

p̄(a)
1{p(a)≥N−3/2} . cN k̃N . (A.59)

where for the second inequality we note p̄(a) & p(a) for all a due to v ≥ 1. Substituting (A.58) and

(A.59) into the definitions of ψ̃(z) and ψ̄(z) ((A.56) and (A.46)), we obtain

max
i
|ψ̃(z̃i)− ψ̄(z̃i)| .P cN k̃NT

−1/2. (A.60)

According to Lemma 3 of Brown and Greenshtein (2009), with the additional condition that

maxi≤N
√
T |si| = o(Nd′) for every d′ > 0, we have (in our notation) that, for every d > 0,

E

(∑
i

T (ψ̃(z̃i)− ψ̄(z̃i))
2

)
. Nd.

A scrutiny of their proof of the lemma reveals that this additional condition is only indispensable

(a) to derive three equalities: (48), (59), and (62) (the way it is used is similar across the three), and
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(b) to guarantee that maxi≤N
√
T ψ̄(z̃i) = o(Nd) for every d > 0. In the absence of this additional

condition, a weaker result holds: for every d > d′ > 0,

E

(∑
i

min{T (ψ̃(z̃i)− ψ̄(z̃i))
2, Nd′}1{|z̃i|≤Nd′ ,p(z̃i)≥Nd′−1}

)
. Nd. (A.61)

(A.61) turns out sufficient for establishing a desired bound on
∑

i∈B(ψ̃(z̃i) − ψ̄(z̃i))
2, which we

demonstrate now. Then we have, for every d > d′ > 0,∑
i∈B

T (ψ̃(z̃i)− ψ̄(z̃i))
2 .P

∑
i∈B

min{T (ψ̃(z̃i)− ψ̄(z̃i))
2, Nd′}

.P Nd +
∑
i∈B

min{T (ψ̃(z̃i)− ψ̄(z̃i))
2, Nd′}1{p(z̃i)≥Nd′−1} . Nd.(A.62)

Here the first inequality comes from (A.60), the second comes from E
(∑

i∈B 1{p(z̃i)<Nd′−1}

)
.

k̃NN
d′ , and the last is simply (A.61).

Next, we show that
∑

i∈B(ψ̂(ẑi)− ψ̃(z̃i))
2 is small. Lemma B2 states that

max
i∈B
|ẑi − z̃i| .P χN :=

√
T/N

(
εN + E(s2

j )
1/2
)
, with εN := k5

N . (A.63)

Since ψ̂(ẑi) and ψ̃(z̃i) depends on {ẑj} and {z̃j} in the exactly same way, we can obtain the desired

result by exploiting that such dependence is sufficiently “continuous”. Concretely, we write, for all

i ∈ B,

|p̂(ẑi)− p̃(z̃i)| ≤
1

NkN

∑
j

∣∣∣∣φ( ẑj − ẑikN

)
− φ

(
z̃j − z̃i
kN

)∣∣∣∣ .P χNk
−2
N p̃(z̃i) +N−2k−1

N , (A.64)

|p̂′(ẑi)− p̃′(z̃i)| ≤
1

Nk3
N

∑
j

∣∣∣∣(ẑj − ẑi)φ( ẑj − ẑikN

)
− (z̃j − z̃i)φ

(
z̃j − z̃i
kN

)∣∣∣∣
.P χNk

−4
N p̃(z̃i) +N−2k−1

N . (A.65)

Here the first inequalities for both lines hold by definition (note φ′(a) = −aφ(a)). The second

inequalities for both lines comes from substituting (A.63) into (B.158) of Lemma B4 (note k̃N .

k−1
N ). Since p̃(z̃i) ≥ 1

NkN
by definition, we obtain from (A.64) and (A.65) that

max
i∈B

|p̂(ẑi)− p̃(z̃i)|
p̃(z̃i)

.P χNk
−2
N +N−1 . χNk

−2
N , (A.66)

max
i∈B

|p̂′(ẑi)− p̃′(z̃i)|
p̃(z̃i)

.P χNk
−4
N +N−1 . χNk

−4
N . (A.67)
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Then we have

max
i∈B

∣∣∣∣ p̂′(ẑi)p̂(ẑi)
− p̃′(z̃i)

p̃(z̃i)

∣∣∣∣ ≤ max
i∈B

p̃(z̃i)

p̂(ẑi)

|p̂′(ẑi)− p̃′(z̃i)|
p̃(z̃i)

+ max
i∈B

p̃(z̃i)

p̂(ẑi)

p̃′(z̃i)

p̃(z̃i)

|p̂(ẑi)− p̃(z̃i)|
p̃(z̃i)

.P χNk
−4
N .

(A.68)

The first line is direct algebra. Substituting (A.58), (A.66), and (A.67) into the right-hand-side of

the first line, we obtain the second line. Combining (A.63) and (A.68) with the definitions of ψ̂ and

ψ̃ ((A.43) and (A.56)), we obtain

∑
i∈B

(ψ̂(ẑi)− ψ̃(z̃i))
2 ≤ N

T
max
i∈B
|ẑi − z̃i|2 +

N

T
max
i∈B

∣∣∣∣ p̂′(ẑi)p̂(ẑi)
− p̃′(z̃i)

p̃(z̃i)

∣∣∣∣2 .P k
−8
N (ε2N + E(s2

j )). (A.69)

The goal is to show
∑

i∈B(ψ̂(ẑi)− ψ̃(z̃i))
2 = oP(1 + (SOPT)2), which is apparently true from (A.69)

if E(s2
j ) ≤ ε2N . For the case E(s2

j ) > ε2N , we observe

E(s2
j ) = E(s2

j1{εN/2<|si|≤1}) + E(s2
j1{|si|≤εN/2}) + E(s2

j1{|si|>1}) ≤ P(|si| > εN/2) + ε2N/4 + cNN
−1,

where the last step comes from condition (a) of Assumption 2. We hence obtain P(|si| > εN/2) & ε2N ,

which futher indicates
∑

i 1{|si|≥εN/2} &P Nε2N (the sum follows binomial distribution with its

standard deviation dominated by its mean). As a result, we write

Nε4N .P

∑
i

ε2N1{|si|≥εN/2} .P

∑
i

s̃2
i1{|s̃i|≥εN/4} .

∑
i∈Bc

s̃2
i .P 1 + (SOPT)2. (A.70)

Here the second inequality comes from s̃i − si = ε̄i and maxi |ε̄i| .
√

(logN)/T by the uniform

bound on i.i.d normal variables. The thrid inequality holds by the definition of B, and the last

inequality can be established from holds by (A.35) and (the last two inequalities of) (A.42). Since

E(s2
j ) ≤ 1 + E(s2

j1{|si|>1}) . 1 by condition (a) of Assumption 2, it follows from (A.70) that

k−8
N E(s2

j ) = oP(1 + (SOPT)2). Given (A.69), we prove
∑

i∈B(ψ̂(ẑi) − ψ̃(z̃i))
2 = oP(1 + (SOPT)2).

Substituting this result and (A.62) into (A.57), we obtain
∑

i∈B(ψ̂i−ψ̄(z̃i))
2 = oP(1+(SOPT)2), i.e.,

the second part of (A.47). Substituting (A.36) and (A.47) into (A.33), we finally establish (A.34).

Step 5. This step combines (A.34) with (A.35) to prove the theorem, i.e., that the Sharpe

ratio of the strategy ŵOPT we construct achieves
(
SOPT

)2
asymptotically (recall ŵOPT := Mβw̆ and

w̆i = ψ̂(ẑi)/σ̂i).

Using condition (d) of Assumption 1 and (B.143) of Lemma B1, we have maxi≤N |σ̂i/σi− 1| .P

cN . As a result, we obtain ‖Σ1/2w̆ − ψ̂‖ .P cN‖ψ̂‖, where vector ψ̂ has components ψ̂i := ψ̂(ẑi).

Then, it follows from (A.34) and (A.35) that

‖Σ1/2
u w̆ − ψ‖ ≤ ‖Σ1/2w̆ − ψ̂‖+ ‖ψ̂ − ψ‖ .P cN‖ψ‖+ ‖ψ̂ − ψ‖ = oP

(
1 + SOPT

)
. (A.71)
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Hence we have

|(w̆ᵀΣ1/2
u − ψᵀ)ψ| ≤ ‖Σ1/2

u w̆ − ψ‖‖ψ‖ = oP

(
1 +

(
SOPT

)2)
, (A.72)

|w̆ᵀΣuw̆ − ψᵀψ| ≤ ‖Σ1/2
u w̆ − ψ‖2 + 2‖Σ1/2

u w̆ − ψ‖‖ψ‖ = oP

(
1 +

(
SOPT

)2)
. (A.73)

Here for both (A.72) and (A.73), the first inequalities come from Cauchy-Schwarz, whereas the last

equalities come from (A.71) and (A.35). Further, substituting (A.35) into (A.72) and (A.73), we

obtain

w̆ᵀΣ1/2
u ψ =

(
SOPT

)2
+ oP

(
1 +

(
SOPT

)2)
, w̆ᵀΣuw̆ =

(
SOPT

)2
+ oP

(
1 +

(
SOPT

)2)
. (A.74)

On the other hand, we define E = w̆ᵀα − w̆ᵀΣ
1/2
u ψ. Since w̆, Σu, and ψ are all G-measurable

and, according to Proposition 1, E(α|G) = Σ
1/2
u ψ, it follows that E(E2|G) = Var(E|G) =

w̆ᵀΣ
1/2
u Var(α|G)Σ

1/2
u w̆. Then, using Chebyshev’s inequality, we have, for all positive fixed ε,

P(|E|/w̆ᵀΣuw̆ ≥ ε) ≤ E(E2/w̆ᵀΣuw̆)/ε2 = E(w̆ᵀΣ1/2
u Var(α|G)Σ1/2

u w̆/w̆ᵀΣuw̆)/ε2. (A.75)

Because conditionally on G, αi is independent across i, we have Var(α|G)i,j = δi,jVar(αi|G). It

thereby follows that

E(w̆ᵀΣ1/2
u Var(α|G)Σ1/2

u w̆/w̆ᵀΣuw̆) ≤ E

(
max
i≤N

Var(αi|G)

)
≤ E(max

i≤N
α2
i ) = o(1), (A.76)

where the last step comes from condition (c) of Assumption 1. Combining (A.75) and (A.76), we

obtain

w̆ᵀα = w̆ᵀΣ1/2
u ψ + oP(w̆ᵀΣuw̆). (A.77)

Next, we note that

E(ψi) = E(si) = 0, E(ψ2
i ) ≤ E(E(s2

i |G)) = E(s2
i ) ≤ cN .

Here E(si) = 0 comes from condition (c) of Assumption 1, and E(s2
i ) ≤ cN holds by condition (a)

of Assumption 2. Because ψi is i.i.d. across i and independent of (β,Σu), it follows

E(‖βᵀΣ−1/2
u ψ‖2|β,Σu) ≤ cNN‖β‖2MAXλmax(Σ−1

u ) .P cNN. (A.78)

Then we have

‖βᵀw̆‖ ≤ ‖βᵀΣ−1/2
u ψ‖+ ‖βᵀ(w̆ − Σ−1/2

u ψ)‖ .P cNN
1/2
(
1 + SOPT

)
, (A.79)
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where the last inequality comes from (A.78) and (A.71). As a result, we obtain

w̆ᵀMβΣuMβw̆ = w̆ᵀΣuw̆ + w̆ᵀPβΣuPβw̆ − 2w̆ᵀΣuPβw̆ = w̆ᵀΣuw̆ + oP

(
1 +

(
SOPT

)2)
. (A.80)

For the last equality, we use (A.79), the first part of (A.74), and λmin(βᵀβ) &P N . Similarly, using

‖βᵀα‖ .P N
1/2E(α2

i )
1/2 .P cNN

1/2, we write

w̆ᵀMβα = w̆ᵀα+ w̆ᵀPβα = w̆ᵀα+ oP

(
1 + SOPT

)
. (A.81)

We now conclude that, when SOPT does not vanish,

ŜOPT =

(
ŵOPT

)ᵀ
α√

(ŵOPT)ᵀ ΣuŵOPT
=

w̆ᵀMβα√
w̆ᵀMβΣuMβw̆

=
w̆ᵀα√
w̆ᵀΣuw̆

+ oP

(
1 + SOPT

)
= SOPT + oP

(
1 + SOPT

)
. (A.82)

The first two equalities hold by definition. The third one comes from (A.80), (A.81), and the

second part of (A.74). The last equality comes from (A.77) and (A.74). Because ŵOPT is G-

measurable and βᵀŵOPT = 0, the second part of Theorem 1 and Proposition 1 apply. We hence

have ŜOPT ≤ S(G) + oP(1) = SOPT + oP(1). Because −ŜOPT is the Sharpe ratio generated by

−ŵOPT, we also have −ŜOPT ≤ SOPT + oP(1). As a result, when SOPT does vanish, we have

ŜOPT = oP(1). Therefore, given (A.82) and using the subsequence argument (see, e.g., Andrews

and Cheng (2012)), we have

ŜOPT = SOPT + oP

(
1 + SOPT

)
.

In other words, we have, for all P ∈ P,

lim
N,T→∞

P
(∣∣∣ŜOPT − SOPT

∣∣∣≥ εSOPT + ε
)

= 0. (A.83)

Suppose the theorem does not hold, then there is a sequence of data-generating processes Pk with

Pk ∈ P for each k ∈ {1, 2, ...} such that

lim sup
N,T→∞

lim
k→∞

Pk

(∣∣∣ŜOPT − SOPT
∣∣∣≥ εSOPT + ε

)
> 0.

This contradicts (A.83), and the theorem is proved.

A.3 Proof of Proposition 2

Proof of Proposition 2. By definition we have

(Ŝ?)2 = αᵀMβΣ̂−1
u Mβα+ 2αᵀMβΣ̂−1

u Mβū+ ūᵀMβΣ̂−1
u Mβū− T−1N.
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We start with the analysis of αᵀMβΣ̂−1
u Mβα. From (B.143) of Lemma B1, it follows

‖Σ̂u − Σu‖MAX .P

√
T−1 logN. (A.84)

As a result, noting P(0 ≤ Mβ ≤ IN ) → 1 and P(Σu ∼ IN ) → 1 by condition (a) of Assumption 1,

and recalling (S?)2 = αᵀΣ−1
u α we have

|αᵀMβΣ̂−1
u Mβα− αᵀMβΣ−1

u Mβα| .P

√
T−1 logN(S?)2. (A.85)

On the other hand, it holds that

|αᵀMβΣ−1
u Mβα− αᵀΣ−1

u α| ≤ αᵀPβΣ−1
u Pβα+ 2

√
(αᵀΣ−1

u α)(αᵀPβΣ−1
u Pβα)

.P αᵀPβα+
√

(αᵀΣ−1
u α)(αᵀPβα)

.P N−1‖αᵀβ‖2 +

√
N−1(αᵀΣ−1

u α)‖αᵀβ‖2

.P E(α2
i ) + S?E(α2

i )
1/2. (A.86)

Here the first inequality comes from Cauchy-Schwarz inequality. The second comes from P(Σu ∼
IN ) → 1 and P2

β = Pβ. We obtain the third line by using λmin(βᵀβ) & N . The last line holds

because E(‖αᵀβ‖2|β) . N‖β‖2MAXE(α2
i ) .P NE(α2

i ) by condition (a) of Assumption 1. On the

other hand, because of the condition E(α2
i1{|αi|≥cN}) ≤ cNN

−1, we have

E

∣∣∣∣∣αᵀα−
∑
i

α2
i1{|αi|<cN}

∣∣∣∣∣ = E

∣∣∣∣∣∑
i

α2
i1{|αi|≥cN}

∣∣∣∣∣ = o(1),

which, by Markov’s inequality, leads to

αᵀα =
∑
i

α2
i1{|αi|<cN} + oP(1).

Moreover, it holds that

Var

∣∣∣∣∣∑
i

α2
i1{|αi|≥cN}

∣∣∣∣∣ ≤∑
i

E(α4
i1{|αi|<cN}) ≤ c

2
N

∑
i

E(α2
i1{|αi|<cN}).

Using Chebyshev’s inequality, we obtain

αᵀα ≥
∑
i

α2
i1{|αi|<cN} &P

∑
i

E(α2
i1{|αi|<cN}) ≥ NE(α2

i ) + o(1).

Since (S?)2 &P αᵀα due to condition (d) of Assumption 1, we have NE(α2
i ) .P (S?)2 + 1. Hence,

we can

αᵀMβΣ̂−1
u Mβα = (S?)2 + oP

(√
T−1 logN((S?)2 + 1)

)
. (A.87)
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Next, we study αᵀMβΣ̂−1
u Mβū. It holds that

αᵀMβΣ̂−1
u Mβū . αᵀMβΣ̂−1

u MβΣ̂−1
u Mβα

√
ūᵀū . αᵀα

√
ūᵀū = OP(((S?)2 + 1)T−1/2). (A.88)

The first inequality comes from Cauchy-Schwarz. The second inequality holds because P(Mβ ∼
IN )→ 1, M2

β = Mβ, and P(Σ̂u ∼ IN )→ 1 due to P(Σu ∼ IN )→ 1 and (A.84). The third inequality

holds by P(Σ̂u ∼ IN )→ 1 as well.

Now we analyze ūᵀMβΣ̂−1
u Mβū− T−1N . We write

N = tr(Σ̂−1
u Σ̂u) =

∑
i≤N

(Σ̂−1
u )i,i

(
T−1

∑
s∈T

(Mβus)
2
i − (Mβū)2

i

)
= T−1

∑
s∈T

uᵀsMβΣ̂−1
u Mβus − ūᵀMβΣ̂−1

u Mβū

= T−1
∑
s∈T

uᵀsMβΣ̂−1
u Mβus +OP(N/T ). (A.89)

The last line comes from ūᵀMβΣ̂−1
u Mβū .P ūᵀū because of M2

β = Mβ and P(Σ̂u ∼ IN ) → 1.

Furthermore, I have

ūᵀMβΣ̂−1
u Mβū− ūᵀΣ̂−1

u ū ≤ 2|ūᵀΣ̂−1
u Pβū|+ ūᵀPβΣ̂−1

u Pβū

.P

√
ūᵀū

√
ūᵀPβū+ ūᵀPβū .P N

1/2/T. (A.90)

Here we obtain the second inequality using P(Σ̂u ∼ IN ) → 1 and the last inequality using P(Pβ .

IN )→ 1. Similarly, it holds that

T−2
∑
t∈T

(uᵀtMβΣ̂−1
u Mβut − uᵀt Σ̂−1

u ut) = T−2
∑
t∈T

(
2
√
uᵀtut

√
uᵀtPβΣ̂−1

u Pβut + uᵀtPβΣ̂−1
u Pβut

)

.P T−2
∑
t∈T

(√
uᵀtut

√
uᵀtPβut + uᵀtPβut

)
.P

N1/2

T
.(A.91)

From (A.89), (A.90), and (A.91), it directly follows

ūᵀMβΣ̂−1
u Mβū− T−1N = ūᵀΣ̂−1

u ū− T−2
∑
s∈T

uᵀsΣ̂
−1
u us +OP(N1/2/T +N/T 2). (A.92)

On the other hand, we have

Σ̂−1
u = −Σ−2

u (Σ̂u − 2Σu) + Σ−2
u Σ̂−1

u (Σ̂u − Σu)2.
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It then follows from (A.84) and P(Σu ∼ IN )→ 1 that

ūᵀΣ̂−1
u ū = −ūᵀΣ−2

u (Σ̂u − 2Σu)ū+OP(T−1(logN)ūᵀū)

= −ūᵀΣ−2
u (Σ̂u − 2Σu)ū+OP(T−2N logN). (A.93)

Similarly, we have

T−2
∑
t∈T

uᵀt Σ̂
−1
u ut = −T−2

∑
t∈T

uᵀtΣ
−2
u (Σ̂u − 2Σu)ut +OP(T−2N logN). (A.94)

Substituting (A.93) and (A.94) into (A.92), we have

ūᵀMβΣ̂−1
u Mβū− T−1N = −ūᵀΣ−2

u (Σ̂u − 2Σu)ū+ T−2
∑
t∈T

uᵀtΣ
−2
u (Σ̂u − 2Σu)ut

+OP(T−1N1/2 + T−2N logN). (A.95)

Now we analyze Σ̂u. We write

(Σ̂u)i,i = (T−1uuᵀ)i,i + (Mβūū
ᵀMβ)i,i

+(PβT−1uuᵀ)i,i + (T−1uuᵀPβ)i,i + (PβT−1uuᵀPβ)i,i. (A.96)

From the uniform bound on i.i.d. random variables and ‖Pβ‖MAX . N−1 by condition (a) of

Assumption 1, it follows

‖Mβūū
ᵀMβ‖MAX .P ‖ūūᵀ‖MAX = ‖ū‖2MAX . T−1 logN.

Using P(Σu ∼ IN )→ 1, this gives∑
i≤N
|ū2
i (Σ
−2
u )i,i(Mβūū

ᵀMβ)i,i| .P T
−1(logN)

∑
i≤N

ū2
i .P T

−2N logN, (A.97)

and

T−2
∑
t∈T

∑
i≤N
|u2
i,t(Σ

−2
u )i,i(Mβūū

ᵀMβ)i,i| .P T
−3(logN)

∑
t∈T

∑
i≤N

u2
i,t .P T

−2N logN. (A.98)

Further, we obtain ∑
i≤N,j≤K

E(|(T−1uuᵀβ)i,j ||β,Σu)

≤
∑

i≤N,j≤K

√
E((T−1uuᵀ)i,i|Σu)E((T−1βᵀuuᵀβ)j,j |β,Σu)
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=
∑

i≤N,j≤K

√
(Σu)i,i(βᵀΣuβ)j,j ≤ N3/2K‖β‖MAXλmax(Σu) .P N

3/2. (A.99)

The first inequality comes from Cauchy-Schwarz. The last inequality directly follows from condition

(a) of Assumption 1. Similarly,∑
j≤K,k≤K

E(|(T−1βuuᵀβ)j,k||β,Σu)

≤
∑

j≤K,k≤K

√
E((T−1βᵀuuᵀβ)j,j |β,Σu)E((T−1βᵀuuᵀβ)j,j |β,Σu)

=
∑

j≤K,k≤K

√
(βᵀΣuβ)j,j(βᵀΣuβ)k,k ≤ KN‖β‖MAXλmax(Σu) .P N. (A.100)

From (A.99) and (A.100), it directly follows∑
i≤N,j≤K

|(T−1uuᵀβ)i,j | .P N
3/2,

∑
j≤K,k≤K

|(T−1βuuᵀβ)j,k| .P N. (A.101)

Using (A.101), and noting maxi≤N |ūi| .P

√
T−1 logN from the uniform bound on i.i.d. random

variables and ‖(βᵀβ)−1β‖MAX . N−1 by condition (a) of Assumption 1, we obtain∑
i≤N
|ū2
i (T
−1uuᵀPβ)i,i| ≤

∑
i≤N,j≤K

|ū2
i (T
−1uuᵀβ)i,j |‖(βᵀβ)−1β‖MAX.

.P N−1T−1 logN
∑

i≤N,j≤K
|(T−1uuᵀβ)i,j | .P N

1/2T−1 logN, (A.102)

and ∑
i≤N
|ū2
i (Pβ(T−1uuᵀ)Pβ)i,i| ≤

∑
i≤N,j≤K,k≤K

ū2
i |(T−1βuuᵀβ)j,k|‖(βᵀβ)−1β‖2MAX

.P N−1T−1 logN
∑

j≤K,k≤K
|(T−1βuuᵀβ)j,k| .P T

−1 logN.(A.103)

Symmetric reasoning leads to

1

T 2

∑
s∈T

∑
i≤N
|u2
i,s(T

−1uuᵀPβ)i,i| .P N1/2T−1, (A.104)

1

T 2

∑
s∈T

∑
i≤N
|u2
i,s(Pβ(T−1uuᵀ)Pβ)i,i| .P T−1. (A.105)

Substituting (A.97), (A.98), (A.102), (A.104), (A.103), and (A.105) into (A.95) and (A.96), we
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obtain

ūᵀMβΣ̂−1
u Mβū− T−1N = −T−2

∑
i:i≤N

Ai +OP(T−1N1/2 logN + T−2N logN). (A.106)

Here and only here we use short-hand notation

Ai =
∑
t∈T

∑
t′∈T :t′ 6=t

(Σ−2
u )i,i(T

−1uuᵀ − 2Σu)i,iui,tui,t′ .

Since Ai is i.i.d. across i, we only need to analyze it for a single i. It obviously holds that E(Ai|Σu) =

0. We also note E(((T−1uuᵀ − 2Σu)i,i)
2ui,tui,t′ui,sui,s′ |Σu) = 0 unless two elements of {t, t′, s, s′}

are the same, and E(((T−1uuᵀ − 2Σu)i,i)
2ui,tui,t′ui,sui,s′ |Σu) . T−2E(u8

i,t|Σu) unless elements of

{t, t′, s, s′} only take two different values. Then we obtain

E(A2
i |Σu) . T 2(Σ−4

u )i,iE(u8
i,t|Σu).

It hence follows that

T−2
∑
i:i≤N

Ai .P T
−1N1/2E(u8

i,t(Σ
−4
u )i,i) . T−1N1/2, (A.107)

where the last inequality comes from that εi,t has finite eighth moment by assumption. Subsituting

(A.107) into (A.106), we obtain

ūᵀMβΣ̂−1
u Mβū− T−1N = OP(T−1N1/2 logN + T−2N logN). (A.108)

Combining (A.87), (A.88), and (A.108), and noting N1/2T ≤ cN and T . N by assumption, we

obtain

(Ŝ?)2 = (S?)2 + oP

(
T−1/2

√
logN((S?)2 + 1) + T−1N1/2 logN

)
= (S?)2 + oP(T−1N1/2 logN((S?)2 + 1)).

Therefore, we obtain, under S? ≥ C,

(Ŝ?)2 = (S?)2
(

1 + oP(T−1N1/2 logN)
)
, =⇒ Ŝ? − S?

S?
= oP(T−1N1/2 logN).

And, under S∗ ≤ cN , we have

(Ŝ?)2 = (S?)2 + oP(T−1N1/2 logN), =⇒ Ŝ? − S? = oP

(√
T−1N1/2 logN

)
.
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We note by construction (S̃?)2 = (Ŝ?)2 +N/T . Then, under S? ≥ C, it holds that

(Ŝ?)2 = (S?)2+N/T+(S?)2oP(T−1N1/2 logN), =⇒
Ŝ? −

√
(S?)2 +N/T

S?
= oP(T−1N1/2 logN).

Similarly, under S∗ ≤ cN , we have

(Ŝ?)2 = (S?)2 +N/T + oP(T−1N1/2 logN), =⇒ Ŝ? −
√

(S?)2 +N/T = oP(T−1N1/2 logN).

The proof concludes.

A.4 Proof of Proposition 3

Proof. From Assumption 1, it holds that

αᵀα = µ2ρN +OP(µ2(ρN)1/2), αᵀū = OP(µ(ρN)1/2T−1/2), (A.109)

ūᵀū = T−1Nσ2 +OP(T−1N1/2). (A.110)

Here the first result of (A.109) comes from E(αᵀα) = µ2ρN and Var(αᵀα) ≤ µ4ρN ; the last result

of (A.109) relies on the independence of ui,t across t and with α; the result of (A.110) comes from

the independence of ui,t across (i, t). Since by definition α̂i = αi + ūi, we obtain, using (A.109) and

(A.110), and µ ≤ cN ,

αᵀα̂ = µ2ρN + oP(µ(ρN)1/2), α̂ᵀα̂ = T−1Nσ2 + µ2ρN + oP(T−1/2N1/2 + µ(ρN)1/2). (A.111)

Because E
(
rᵀt+1ŵ

CSR|Ft
)

= σ̂−2αᵀα̂ and Var
(
rᵀt+1ŵ

CSR|Ft
)

= σ̂−4σ2α̂ᵀα̂, we prove ŜCSR = SCSR +

oP(1) directly from (A.111).

A.5 Proof of Proposition 4

Proof of Proposition 4. We let ẑ = −Φ−1(p
(k̂)
/2) and ẑ′ = −Φ−1(p

(k̂+1)
/2), where we recall Φ is the

standard normal cdf. In other words, ẑ and ẑ′ are the t-statistics whose p-values, calculated based

on standard normal distribution, are p
(k̂)

and p
(k̂+1)

. We also set cλ =
√

(2− λ) logN . We note,

for all sequences aN →∞,

aNΦ(−aN )/φ(aN )→ 1. (A.112)

As a result, it holds, for all fixed 0 < λ ≤ 2,

NΦ(−cλ)→∞. (A.113)

We further define

H0 = {i ≤ N : αi = 0}, H+ = {i ≤ N : αi = µ}, H− = {i ≤ N : αi = −µ},
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m0(a) =
∑
i∈H0

1{|z̆i|≥a}, m+(a) =
∑
i=H+

1{|z̆i|≥a}, m−(a) =
∑
i=H−

1{|z̆i|≥a},

where z̆i = |S|1/2ᾰi/σ̆i is the t-statistic of stock i calculated from subsample S. From the definitions

of ẑ and ẑ′, we obtain

2NΦ(−ẑ)
m0(ẑ) +m+(ẑ) +m−(ẑ)

≤ τ, 2NΦ(−ẑ′)
m0(ẑ′) +m+(ẑ′) +m−(ẑ′)

> τ, (A.114)

m0(ẑ′) +m+(ẑ′) +m−(ẑ′) = m0(ẑ) +m+(ẑ) +m−(ẑ) + 1. (A.115)

Noting z̆i is i.i.d. across i, we have, for all deterministic positive sequences (aN , a
′
N ) satisfying

NΦ(−aN )→∞ and ρNΦ(|S|1/2µ/σ − a′N )→∞,

m0(aN ) = 2NΦ(−aN ) (1 + oP(1)) , (A.116)

m±(a′N ) =
ρ

2
N(Φ(|S|1/2µ/σ − a′N ) + Φ(−|S|1/2µ/σ − a′N )) (1 + oP(1)) . (A.117)

Now suppose z∗ ≥ cλ for all fixed 0 < λ ≤ 2. Then by direct calculations it follows from (20) that,

for all fixed 0 < λ ≤ 2,
ρΦ(|S|1/2µ/σ − cλ)

Φ(−cλ)
→ 0. (A.118)

Using (A.113), (A.118), (A.116), (A.117) and the monotonicity of Φ, we obtain, for all fixed 0 <

λ ≤ 2,

m0(cλ) = 2NΦ(−cλ) (1 + oP(1)) , m±(cλ) = oP(NΦ(−cλ)).

Hence, from (A.114) and (A.115), we conclude, for all fixed 0 < λ ≤ 2,

P(ẑ ≥ cλ)→ 1. (A.119)

Combining (A.119), (A.118), and (A.117), we have, for all fixed λ > 0,

P(m0(ẑ) +m+(ẑ) +m−(ẑ) ≤ CNλ)→ 1.

Moreover, we observe

∣∣∣ŜBH
∣∣∣ ≤ µ

σ

∑
i≤N

∣∣ŵBH
i

∣∣√∑
i≤N

(
ŵBH
i

)2 ≤ µ

σ

√∑
i≤N

1{ŵBH
i 6=0} ≤

µ

σ

√
m0(ẑ) +m+(ẑ) +m−(ẑ).

Then from that µ ≤ CNλ for some fixed λ < 0, it follows ŜBH = oP(1). On the other hand, from

(A.118) it follows ρNΦ(T 1/2µ/ς − z∗) ≤ CNλ for all fixed 0 < λ ≤ 2. Hence SBH = o(1) and we

prove ŜBH − SBH = oP

(
SBH + 1

)
under z∗ ≥ cλ.

Next, we suppose z∗ ≤ cλ for some fixed 0 < λ ≤ 2. Then, using (20) and (A.112), it holds that

62



for some fixed 0 < λ ≤ 2,
ρΦ(|S|1/2µ/σ − cλ)

Φ(−cλ)
→∞. (A.120)

We combine (A.113), (A.120), (A.116), and (A.117) to conclude that, for some fixed 0 < λ ≤ 2 and

in probability,
m±(cλ)

m0(cλ)
→∞.

It then follows from (A.114) and (A.115) that P(ẑ ≤ cλ) → 1 for some fixed 0 < λ ≤ 2. Given

(A.113) and (A.120), we have, in probability

NΦ(−ẑ)→∞, ρNΦ(|S|1/2µ/σ − ẑ)→∞. (A.121)

Applying equation (13) of Liu and Shao (2014) to (A.121), we obtain

m0(ẑ) = 2NΦ(−ẑ) (1 + oP(1)) , m±(ẑ) =
ρ

2
N(Φ(|S|1/2µ/σ− ẑ) + Φ(−|S|1/2µ/σ− ẑ)) (1 + oP(1)) .

(A.122)

Since ẑ′ ≥ ẑ, (A.122) would still hold if all ẑ are replaced by ẑ′. Hence, substituting (A.122) back

into (A.114) and (A.115), and noting Φ(−|S|1/2µ/σ − ẑ) ≤ Φ(−ẑ), we have

2(1− τ)Φ(−ẑ)
τρΦ(|S|1/2µ/σ − ẑ)

= 1 + oP(1). (A.123)

Next, using (20) and (A.112), we note that z∗ ≤ cλ for some fixed 0 < λ ≤ 2 leads to that

|S|1/2µ ≥ cλ′ for some fixed λ′ < 2. As a result, using (A.112), and comparing (20) and (A.123), we

have

Φ(|S|1/2µ/σ − ẑ) = Φ(|S|1/2µ/σ − z∗) (1 + oP(1)) . (A.124)

In light of (A.122) - (A.124), we have

m+(ẑ) +m−(ẑ) = ρNΦ(|S|1/2µ/σ − z∗) (1 + oP(1)) . (A.125)

Moreover, from (A.112) and (A.120), and that ρ . Nd with d < 0, it follows µ &
√

(logN)/T .

Now we analyze the Sharpe ratio, we have

σ̂2αᵀŵBH =
∑
i=H+

µᾰ′i1{|ẑi|≥ẑ} −
∑
i=H−

µᾰ′i1{|ẑi|≥ẑ}

= µ2(m+(ẑ) +m−(ẑ)) +
∑
i=H+

µū′i1{|ẑi|≥ẑ} −
∑
i=H−

µū′i1{|ẑi|≥ẑ}

= µ2(m+(ẑ) +m−(ẑ)) +OP

(
µ
√
m+(ẑ) +m−(ẑ)|S′|−1/2

)
.

Here ū′i = |S′|−1
∑

s∈S′ ui,s and in the last step we utilize the independence of of εi,s across split
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samples. Similarly, we have

σ̂4
∥∥ŵBH

∥∥2
=

∑
i=H+

(ᾰ′i)
2
1{|ẑi|≥ẑ} +

∑
i=H−

(ᾰ′i)
2
1{|ẑi|≥ẑ} +

∑
i=H0

(ᾰ′i)
2
1{|ẑi|≥ẑ}

= µ2(m+(ẑ) +m−(ẑ)) + 2µ
∑
i∈H+

ū′i1{|ẑi|≥ẑ} − 2µ
∑
i∈H−

ū′i1{|ẑi|≥ẑ} +
∑
i≤N

(ū′i)
2
1{|ẑi|≥ẑ}

= µ2(m+(ẑ) +m−(ẑ)) +OP

(
µ
√
m+(ẑ) +m−(ẑ)|S′|−1/2

)
+OP((m+(ẑ) +m−(ẑ) +m0(ẑ))|S′|−1).

Given (A.122) and (A.121), we have m+(ẑ)+m−(ẑ)→∞ in probability, m0(ẑ)/(m+(ẑ)+m−(ẑ)) .P

1. Thus, noting |S′|−1/2 ≤ cNµ as µ &
√

(logN)/T , we obtain

αᵀŵBH = (1 + oP(1)) σ̂−2µ2(m+(ẑ) +m−(ẑ)),∥∥ŵBH
∥∥2

= (1 + oP(1)) σ̂−4µ2(m+(ẑ) +m−(ẑ)).

We prove the proposition, given (A.125).

A.6 Proof of Proposition 5

Proof of Proposition 5. We start by defining

H0 = {i ≤ N : αi = 0}, H+ = {i ≤ N : αi = µ}, H− = {i ≤ N : αi = −µ}, w̃1 = w̃1σ̂2.

Then from the definition of w̃1, it follows

E(rᵀt+1w̃
1|Ft) = αᵀw̃1 = µ

∑
i∈H+

sgn(α̂i)(|α̂i| − λ)+ − µ
∑
i∈H−

sgn(α̂i)(|α̂i| − λ)+, (A.126)

Var(rᵀt+1w̃
1|Ft) = σ2‖w̃1‖2 = σ2

∑
i≤N

((|α̂i| − λ)+)2. (A.127)

Because, conditional on αi, the distribution of α̂i is N (αi, σ
2/T ), the statistical moments of w̃1

satisfy, for j ∈ {0, 1, 2, 4},

E((w̃1
i )
j |αi = µ) = T 1/2σ−1

∫ ∞
−∞

(sgn(x)(|x| − λ)+)j φ(T 1/2σ−1(x− µ))dx

= (T−1/2σ)j
∫ ∞
−∞

(sgn(x)(|x| − λ∗)+)j φ(x− µ∗)dx. (A.128)

where we use the short-hand notation λ∗ = T 1/2σ−1λ and µ∗ = T 1/2σ−1µ, and here and below we

set z0 = 1{z 6=0} by convention. Moreover, by direct calculations, we have, for j ∈ {0, 2, 4},∫ ∞
−∞

sgn(x)(|x| − λ∗)+φ(x− µ∗)dx =

∫ ∞
λ∗

(x− λ∗)(φ(x− µ∗)− φ(x+ µ∗))dx
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& (1 ∧ µ∗)
∫ ∞
λ∗

(x− λ∗)φ(x− µ∗)dx

∼ (1 ∧ µ∗)(1 ∨ (µ∗ − λ∗))
1 ∨ (λ∗ − µ∗)

Φ(µ∗ − λ∗), (A.129)∫ ∞
−∞

((|x| − λ∗)+)jφ(x− µ∗)dx =

∫ ∞
λ∗

(x− λ∗)j(φ(x− µ∗) + φ(x+ µ∗))dx

∼
∫ ∞
λ∗

(x− λ∗)jφ(x− µ∗)dx

∼ (1 ∨ (µ∗ − λ∗))j

(1 ∨ (λ∗ − µ∗))j
Φ(µ∗ − λ∗). (A.130)

By symmetry, we have, for all integer j ≥ 0,

E((w̃1
i )
j |αi = µ) = (−1)jE((w̃1

i )
j |αi = −µ). (A.131)

Similarly, we have, for j ∈ {2, 4},

E((w̃1
i )
j |αi = 0) = (T−1/2σ)j

∫ ∞
−∞

((|x| − λ∗)+)jφ(x)dx, (A.132)∫ ∞
−∞

((|x| − λ∗)+)jφ(x)dx = 2

∫ ∞
λ∗

(x− λ∗)jφ(x)dx ∼ 1

(1 ∨ λ∗)j
Φ(−λ∗). (A.133)

Using (A.128), we observe that SLASSO defined in the statement of the proposition satisfies

SLASSO = ρµσ−1N1/2 E(w̃1
i |αi = µ)√

(1− ρ)E((w̃1
i )

2|αi = 0) + ρE((w̃1
i )

2|αi = µ)
. (A.134)

We now prove Ŝ1 − SLASSO = oP(1).

We first consider the case where ρNµ2Φ(µ∗−λ∗) ≤ cN . Then, using (A.128) and (A.130) (setting

j = 0), and (A.131), we obtain

E

 ∑
i∈H+∪H−

1{(|α̂i|−λ)+ 6=0}

 = ρNE((w̃1
i )

0|αi = µ) ∼ ρNΦ(µ∗ − λ∗) ≤ cNµ−2. (A.135)

As a result, we have

|Ŝ1| =
∣∣E(rᵀt+1w̃

1|Ft)
∣∣

Var(rᵀt+1w̃
1|Ft)1/2

≤ µ

σ

∑
i∈H+

|(|α̂i| − λ)+|(∑
i∈H+

|(|α̂i| − λ)+|2
)1/2

+
µ

σ

∑
i∈H− |(|α̂i| − λ)+|(∑

i∈H− |(|α̂i| − λ)+|2
)1/2

≤ µ

σ

√ ∑
i∈H+∪H−

1{(|α̂i|−λ)+ 6=0} .P cN . (A.136)

Here the second inequality holds by Cauchy-Schwarz and the last holds by Markov’s inequality and
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(A.135). On the other hand, it follows from (A.134) that

∣∣SLASSO
∣∣ ≤ √

ρNµσ−1

∣∣E(w̃1
i |αi = µ)

∣∣
E((w̃1

i )
2|αi = µ)1/2

=
√
ρNµσ−1

∣∣E(w̃1
i (w̃

1
i )

0|αi = µ)
∣∣

E((w̃1
i )

2|αi = µ)1/2

≤
√
ρNµσ−1E((w̃1

i )
0|αi = µ)1/2 ≤ cN , (A.137)

where the second inequality comes from Cauchy-Schwarz and the last holds by (A.135). Combining

(A.136) and (A.137), we obtain Ŝ1 − SLASSO = oP(1), under ρNµ2Φ(µ∗ − λ∗) ≤ cN .

Next, we consider the case where ρNµ2Φ(µ∗ − λ∗) & 1. From (A.128), (A.129), and (A.130), it

follows that, for j ∈ {2, 4},

E(w̃1
i |αi = µ) & T−1/2σ

(1 ∧ µ∗)(1 ∨ (µ∗ − λ∗))
1 ∨ (λ∗ − µ∗)

Φ(µ∗ − λ∗), (A.138)

E((w̃1
i )
j |αi = µ) ∼ (T−1/2σ)j

(1 ∨ (µ∗ − λ∗))j

(1 ∨ (λ∗ − µ∗))j
Φ(µ∗ − λ∗), (A.139)

E((w̃1
i )
j |αi = 0) ∼ (T−1/2σ)j

1

(1 ∨ λ∗)j
Φ(−λ∗). (A.140)

Using (A.138) - (A.140), µ ≤ cNµ∗ (by T →∞), and µ ≤ cN (by assumption), we have

ρNE((w̃1
i )

2|αi = µ)

(ρN)2E(w̃1
i |αi = µ)2

.
1

ρN(1 ∧ µ∗)2Φ(µ∗ − λ∗)
. cN

1

ρNµ2Φ(µ∗ − λ∗)
≤ cN , (A.141)

w̃
ρNE((w̃1

i )
4|αi = µ) +NE((w̃1

i )
4|αi = 0)

(ρN)2E((w̃1
i )

2|αi = µ)2 +N2E((w̃1
i )

2|αi = 0)2
≤ cN . (A.142)

On the other hand, because (αi, w̃
1
i ) is i.i.d. across i, we obtain from (A.126) and (A.127) that

E(αᵀw̃1) = ρNµE(w̃1
i |αi = µ),

Var(αᵀw̃1) . ρNµ2E((w̃1
i )

2|αi = µ),

E(‖w̃1‖2) = ρNE((w̃1
i )

2|αi = µ) + (1− ρ)NE((w̃1
i )

2|αi = 0),

Var(‖w̃1‖2) . ρNE((w̃1
i )

4|αi = µ) + (1− ρ)NE((w̃1
i )

4|αi = 0).

Combining these four results with (A.141) and (A.142), and using Chebyshev’s inequality, we obtain

αᵀw̃1

E(αᵀw̃1)
= 1 + oP(1),

‖w̃1‖2

E(‖w̃1‖2)
= 1 + oP(1).

Given (A.126), (A.127), and (A.134), and noting that w̃1 and ŵ1 are collinear, we conclude that

Ŝ1 − SLASSO = oP(1), under ρNµ2Φ(µ∗ − λ∗) & 1. The proof ends.
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Appendix B Proofs of Technical Lemmas

Lemma B1. We define ūi = T−1
∑

s∈T ui,s. Suppose Assumptions 1 and 2 holds. Also suppose

T . Nd with fixed d < 1. Then it holds that, as N,T →∞,

max
1≤i≤N

|σ̂2
i − σ2

i | = OP

(√
(logN)/T

)
, (B.143)

max
1≤i≤N

|(Pβū)i| = OP

(
1/
√
TN

)
, (B.144)

max
1≤i≤N

|(Pβα)i| = OP

(
N−1/2E(s2

i )
1/2
)
. (B.145)

Proof. We start with (B.143). First of all, we write

max
1≤i≤N

|σ̂2
i − σ2

i | ≤ ‖T−1Mβuu
ᵀMβ − Σu‖MAX

≤ ‖MβΣuMβ − Σu‖MAX + ‖Mβ(T−1uuᵀ − Σu)Mβ‖MAX. (B.146)

Now we establish the upper bounds of the two terms in the second line. We write

‖MβΣuMβ − Σu‖MAX ≤ ‖PβΣuPβ‖MAX + 2‖PβΣu‖MAX

≤ (N‖Pβ‖MAX + 2)‖Pβ‖MAX‖Σu‖MAX .P N
−1. (B.147)

The last inequality comes from ‖Pβ‖MAX ≤ C‖β‖2MAX‖(βᵀβ)−1‖MAX .P N
−1, which is true because

of condition (a) of Assumption 1. On the other hand, we have

‖Mβ(T−1uuᵀ−Σu)Mβ‖MAX ≤ ‖T−1uuᵀ−Σu‖MAX(1+2N‖Pβ‖MAX+N2‖Pβ‖MAX) .P

√
(logN)/T ,

(B.148)

where the last inequality comes from the uniform bound on i.i.d. normal variables and that

λmax(Σu) .P 1 by condition (d) of Assumption 1. Substituting (B.147) and (B.148) into (B.146),

and noting N−1 ≤ C
√

(logN)/T by assumption, we obtain (B.143).

We obtain (B.144) by writing

max
1≤i≤N

|(Pβū)k| ≤ C‖β‖MAX‖(βᵀβ)−1‖MAX max
1≤k≤K

|(βᵀū)k| .P max
1≤k≤K

N−1|(βᵀū)k| .P 1/
√
TN.

Here the last inequality comes from that K is fixed, E(ūiūj |β,Σu) . δi,jσ
2
i T
−1 by condition (e) of

Assumption 1, and λmax(Σu) .P 1.

Finally, we write

max
1≤i≤N

|(Pβα)i| ≤ C‖β‖MAX‖(βᵀβ)−1‖MAX max
1≤k≤K

|(βᵀα)k| ≤ CN−1 max
1≤k≤K

|(βᵀα)k|. (B.149)

On the other hand, from condition (c) and (e) of Assumption 1 and condition (a) of Assumption 2,
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we have E(αiαj |β,Σu) = δi,jσ
2
i E(s2

i ). Therefore, as K is fixed and λmax(Σu) .P 1, we have

max
1≤k≤K

|(βᵀα)k| .P cNN
1/2‖β‖MAX .P N

1/2E(s2
i )

1/2. (B.150)

Substituting (B.150) into (B.149), we obtain (B.145).

Lemma B2. Suppose Assumptions 1 and 2 hold. Also assume Nd . T . Nd′ with fixed d > 1/2

and d < 1. Then it holds that, as N,T →∞,

max
1≤i≤N

|ẑi − z̃i| ≤ cN k̃N , max
i∈B
|ẑi − z̃i| .P χN , (B.151)

where z̃i := T 1/2(si + ε̄i), χN :=
√
T/N(k5

N + E(s2
j )

1/2), and set B is B := {i ∈ N : |z̃i| ≤ k̃N}, with

k̃N := k−2
N .

Proof. By definition we have

ẑi − z̃i = −T 1/2 (Pβα)i
σ̂i

− T 1/2 (Pβū)i
σ̂i

+

(
σi
σ̂i
− 1

)
z̃i. (B.152)

Since T & Nd with d > 1/2 by assumption, (B.143) of Lemma B1 leads to max1≤i≤N |σ̂2
i − σ2

i | =

oP(1). Then, noting mini σi &P 1 by condition (d) of Assumption 1, we obtain mini σ̂i &P 1.

Applying (B.143) again, we have maxi

∣∣∣σiσ̂i − 1
∣∣∣ .P

√
(logN)/T . Using these two results, and

substituting (B.144) and (B.145) of Lemma B1 into (B.152), we obtain

max
1≤i≤N

|ẑi − z̃i| .P χN +
√

(logN)/T max
1≤i≤N

|z̃i|, max
i∈B
|ẑi − z̃i| .P χN +

√
(logN)/T max

i∈B
|z̃i|.

(B.153)

The definition of set B leads to maxi∈B |z̃i| ≤ k̃N . Then, noting T & Nd with d > 1/2 by assumption,

we have
√

(logN)/T maxi∈B |z̃i| .
√
T/Nk5

N ≤ χN . Given the second part of (B.153), we obtain

the second part of (B.151).

On the other hand, since P(|si| ≥ 1) ≤ E(s2
i1{|si|≥1}) ≤ cNN−1 by condition (a) of Assumption 2,

we have P(maxi |si| ≥ 1) ≤ cN . Combining this result with maxi |ε̄i| .P

√
(logN)/T by the uniform

bound on i.i.d. normal variables, we obtain max1≤i≤N |z̃i| .P cNT
1/2 (again noting T & Nd with

d > 1/2 by assumption). Then we have
√

(logN)/T max1≤i≤N |z̃i| ≤ cN
√

logN . Also, we have

χN ≤ cN since T = o(N) by assumption and E(s2
j ) . 1 + E(s2

i1{|si|≥1}) . 1 by condition (a) of

Assumption 2. Substituting the two bounds into the first part of (B.153), we achieve the first part

of (B.151).

Lemma B3. Suppose Assumptions 1 and 2 hold. Nd . T . Nd′ with fixed d > 1/2 and d < 1.

Then it holds that, as N,T →∞,

P(p(z̃i) ≥ N−3/2,∀i ≤ N) ≥ 1− cN . (B.154)
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Proof. Note that when |x| < 1, we can find C > 1 such that a ≥ C
√
T implies |a−

√
Tx| ≥ (C−1)

√
T .

Therefore, for |x| < 1, we have∫
|a|≥CT 1/2

φ(T 1/2x− a)da ≤
∫
|a|≥(C−1)T 1/2

exp(−a2/2)da . T−1/2 exp(−T ) ≤ cNN−1. (B.155)

The last step comes from T & Nd for some d > 1/2 by assumption. Then we can bound∫
|a|≥CT 1/2

p(a)da ≤
∫
|x|≥1

ps(x)dx+

∫
|x|<1

∫
|a|≥CT 1/2

φ(T 1/2x− a)daps(x)dx

≤
∫
|x|≥1

ps(x)dx+ sup
x:|x|<1

∫
|a|≥CT 1/2

φ(T 1/2x− a)da ≤ cNN−1. (B.156)

Here the last inequality comes from (B.155) and
∫
|x|≥1 ps(x)dx ≤ E(s2

i1{|si|≥1}) ≤ E(s2
i1{|si|≥cN}) ≤

cNN
−1 by condition (a) of Assumption 2. It follows from (B.156) that

P(p(z̃i) < N−3/2) =

∫
1{p(a)<N−3/2}p(a)da

≤ cNN
−1 +

∫
|a|<CT 1/2

1{p(a)<N−3/2}p(a)da ≤ cNN−1. (B.157)

The last inequality also uses T = o(N) by assumption. (B.157) proves the lemma by Bonferroni

inequalities.

Lemma B4. It holds that, as N →∞, for j ∈ {0, 1} and for all (a, ā) satisfying |ā− a| . kN ,

|ajφ(a)− ājφ(ā)| . cNk
−j−1
N |ā− a|φ(a) + cNN

−2. (B.158)

Proof. We first write that, for all a and for j ∈ {0, 1},

|ajφ(a)− ājφ(ā)| ≤ |āj − aj |φ(a) + (|āj − aj |+ |a|j)|φ(ā)− φ(a)|

≤ |ā− a|φ(a) + (|ā− a|+ |a|j)φ(a)|e−(a2−ā2)/2 − 1|.

On the other hand, for all diverging sequence bN , and for all (a, ā) satisfying |a| ≤ bN and |ā− a| ≤
b−1
N , we have |e−(a2−ā2)/2 − 1| . |ā− a|bN . As a result, for all such bN and (a, ā), it holds that, for

j ∈ {0, 1},
|ajφ(a)− ājφ(ā)| . bj+1

N |ā− a|φ(a). (B.159)

Moreover, supa:|a|≥bN |a
jφ(a)| ≤ cNN

−2 for j ∈ {0, 1} and for all bN that satisfies bN & (logN)d

with d > 1/2. Then, choosing bN that satisfies bN & (logN)d with d > 1/2 and bN . cNk
−1
N , we

obtain (B.158).
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