

JACOBS LEVY EQUITY MANAGEMENT CENTER

for Quantitative Financial Research

Discussion: Do Common Factors Really Explain the Cross-Section of Stock Returns?

Guofu Zhou, Washington University in St. Louis

Main Message of Lopez-Lira and Roussanov

Table 6: Descriptive Statistics of the Portfolios: 1974–2014

\mathbf{P}	anel	A:	197	74 - 2	2014
--------------	------	----	-----	--------	------

	Market	Long-short	Beta-neutral
Mean	0.52	0.72	0.74
Std. dev	4.65	3.34	1.70
Sharpe ratio	0.39	0.75	1.51

Panel B: 1974–1999

	Market	Long-short	Beta-neutral
Mean	0.65	1.12	0.99
Std. dev	4.64	2.61	1.48
Sharpe ratio	0.48	1.49	2.32

Panel C: 2000–2014

	Market	Long-short	Beta-neutral
Mean	0.28	-0.06	0.25
Std. dev	4.67	4.31	1.97
Sharpe ratio	0.21	-0.04	0.44

Does APT really work?

A tradable and profitable portfolio that is orthogonal to APT factor risks.

- Thought-provoking
- Academic:
 - u Hopeless to expect a few factors to explain
 - F the large cross section of stock returns.
- Practice:
 - u Hopeful more than ever to get alphas!

The Idea

- Extract betas as usual from the covariance of asset returns
 - u allows slowing changing betas, though stationarity is needed.
- Get the current beta from a beta evolution model
- Forecasting returns with firm characteristics via machine learning
- Use portfolio optimization to achieve various objectives
- Unique features:
 - u clever idea: rich in finance intuition
 - u transparent

1: o-cost Factor

$$\min_{w} \Pi = \frac{1}{2} w' \Omega w$$

s.t.
$$\mathbf{w'} \mathbf{1}_N = 0$$

 $w' \beta_k = 1$
 $w' \beta_j = 1, \quad j \neq k$

2: 1-cost Factor

$$\min_{w} \Pi = \frac{1}{2} w' \Omega w$$

s.t.
$$w' 1_N = 1$$

 $w' \beta_k = 1$
 $w' \beta_j = 1, j \neq k$

Question 1

Comparison:

- While the recovered factors seem reasonable, it is of interest to see how well it compares with static factors from other studies
 - F PCA
 - F APCA, RP-PCA
 - F Geweke and Zhou (1996) (Bayesian; citing is perhaps)
- u The difference may help understand time-varying betas.

3: o-cost O-Port

$$\min_{w} \Pi = \frac{1}{2} w' \Omega w$$

s.t.
$$\mathbf{w'} \mathbf{1}_N = \mathbf{0}$$

 $w' \boldsymbol{\mu} = \boldsymbol{\mu}_0$
 $w' \boldsymbol{\beta}_j = \mathbf{0}, \ \forall \ \mathbf{j}$

where μ is the machine learning forecast.

4: 1-cost O-Port

$$\min_{w} \Pi = \frac{1}{2} w' \Omega w$$

s.t.
$$\mathbf{w'} \mathbf{1}_N = \mathbf{1}$$

$$w' \mu = \mu_0$$

$$w' \beta_j = 0, \quad \forall \mathbf{j}$$

where μ is the machine learning forecast.

Table 6: Descriptive Statistics of the Portfolios: 1974–2014

P	anel	Δ	١.	19	7/	1-2	0	14	
_		4	•		,	_	V -		

	Market	Long-short	Beta-neutral
Mean	0.52	0.72	0.74
Std. dev	4.65	3.34	1.70
Sharpe ratio	0.39	0.75	1.51

Panel B: 1974–1999

	Market	Long-short	Beta-neutral
Mean	0.65	1.12	0.99
Std. dev	4.64	2.61	1.48
Sharpe ratio	0.48	1.49	2.32

Panel C: 2000–2014

	Market	Long-short	Beta-neutral
Mean	0.28	-0.06	0.25
Std. dev	4.67	4.31	1.97
Sharpe ratio	0.21	-0.04	0.44

Question 2

What happens with alternative µ?

Sample mean, alternative ML estimates, etc

Shed lights on the role of information set and estimation efficiency

Why Momentum Matter?

$$Portfolio_t = \alpha + \sum_{i=1}^{5} \beta_i F_{i,t} + \epsilon_t$$

	Long-Short	Beta-Neutral	Long-Short	Beta-Neutral
Intercept	0.75***	0.76***	0.53***	0.69***
	(4.41)	(8.85)	(2.95)	(8.44)
Mkt-RF	-0.06	-0.05**	-0.04	-0.04
	(-1.20)	(-2.35)	(-0.94)	(-1.54)
SMB			0.10	-0.00
			(1.23)	(-0.04)
HML			0.01	-0.02
			(0.14)	(-0.36)
RMW			-0.19	-0.15^{*}
			(-1.36)	(-1.95)
CMA			-0.00	0.07
			(-0.00)	(0.99)
Mom			0.40^{***}	0.15^{***}
			(5.10)	(5.18)

An Explanation

IID APT Factors:

- u As omentum has serial correction,
 - **F APT factors unlikely to explain MOM**
- u So factors orthogonal to APT may have relation MOM
- The difference may help understand time-varying betas

Fama-French Factors:

- u Largety uncorrelated
- u APT factors capture them
- u That is why O-Port is unrelated to them

Question 3: get rid of MOM possible?

$$\min_{w} \Pi = \frac{1}{2} w' \Omega w$$

s.t.
$$\mathbf{w'} \mathbf{1}_N = 1$$

$$w' \mu = \mu_0$$

$$w' \beta_j = 0, \quad \forall j$$

$$w' \beta_{MOM} = 0$$

Question 4: Iterated O-Port?

$$\min_{w} \Pi = \frac{1}{2} w' \Omega w$$

$$s.t. \quad w' 1_{N} = 1$$

$$w' \mu = \mu_{0}$$

$$w' \beta_{j} = 0, \quad \forall j$$

$$w' \beta_{M-Port} = 0$$

Maximum Sharp Ratio?

$$Sharpe^2 = Sharpe_1^2 + \dots + Sharp_q^2$$

The Summary

- Thought-provoking
- Intriguing Results
- Consistent with
 - u Adaptive Market Hypothesis of Andrew Lo
 - F Some risk factors may no longer risky once hedging figured out
 - u New Risk Factors may arise: e.g., COVID
- Factor investing research stays!