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Do Common Factors Really Explain 
the Cross-Section of Stock Returns?



Big Picture

• Arbitrage pricing theory (APT): Securities earn higher expected returns only because
they are more exposed to common (i.e., undiversifiable) risk factors

• The expected excess returns of diversified portfolios that hedge against all systematic
risk should be zero (at least in the limit)

• APT is the foundation of empirical multi-factor models for the cross-section of stock
returns
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Why is it hard to test APT?

• Identifying common factors

– Maybe we haven’t found the right factors?
– Identifying all factors requires estimating very high-dimensional covariance matrices

• Expected returns
– Unobservable
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Our Contribution
We combine:
• An efficient method to measure individual stocks dynamic exposure to every common

latent factor
– Singular value decomposition of the return matrix
– No need to estimate the covariance matrix
– No need to estimate the factors

• Out-of-sample measure of expected returns for each stock
– Broad set of public and firm-specific signals
– Rolling predictive regression
– Machine learning
– Linear Regression

• Pure-plays to hedge all systematic risk while sorting on expected returns.
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Main Findings Summary

• Portfolios that hedge systematic risk perform better than similar portfolios that take
more systematic risk

• Latent factors explain a considerable fraction of the time-series variation of stock
returns

• But, all latent factors’ exposure carry negligible price of risk on average
– Latent factors explain almost none of the cross-sectional variation in excess returns

• Profitable trading strategies with zero ex-ante systematic risk exposure
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APT

rei,t+1 = µi,t + β′
i,tFt+1 + εi,t+1 (1)

• µi,t = αi,t + λ′
tβi,t (assuming F are mean zero)

• E[ϵi,t+1] = E[ϵi,t+1ϵj,t+1] = 0

• αi,t = 0

• Otherwise we can build a diversified long-short portfolio with an extremely high
Sharpe Ratio (“near-arbitrage”)
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Theory

The realized return of a long-short portfolio is:

rh,t+1 − rl,t+1 = µh,t − µl,t + (βh − βl)Ft+1 + ε̄h−l,t+1 (2)

If βh = βl:

rh,t+1 − rl,t+1 = αh,t − αl,t + ε̄h−l,t+1. (3)

If the long-short portfolio has N stocks and the variance of εi,t+1 ≡ σ2 :

SR(rh,t+1 − rl,t+1) ≈
√

N(αh,t − αl,t)

σ
(4)
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Strategy

Zero-cost portfolios with high µi,t and zero βt

• We need expected returns: µ

– Predictive Regressions
– Machine Learning

• We need covariances: β

– High Dimensional Covariance Estimation
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Expected Returns

• We forecast returns at time t + 1 using a subset of variables available at time t

• We model the conditional expectation as a (possibly non-linear) function of
characteristics available at time t using random forest regression

E[ri,t+1|ci,t] = f(ci,t) ≡ µi,t (5)

• Out-of-sample prediction with similar structure as rolling regressions.
– Fit the non-linear function using the information up until time t.
– Past 5 years to predict next month.

• Linear (OLS and LASSO) and non-linear (Random Forest)

ML Details
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Supervised Machine Learning

• Prediction Machine: Receives public information available at the time and returns a
forecast.

• The best forecast available at every period is the conditional expectation.

• Machine Learning is a flexible and objective technique to approximate conditional
expectations.
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Conditional Betas

• We use betas with respect to the latent systematic factors to absorb as much of the
undiversifiable variation as possible

• We use one-year rolling windows of daily returns to address time-varying betas
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(Avoiding) Covariance Estimation

• Let Rt be the T × N matrix of (demeaned) daily excess returns

• Singular Value Decomposition: R = USV⊤

• U⊤U = V⊤V = IT (identity matrix), S diagonal

• C = 1
NR⊤R, with size N × N is the covariance matrix, singular if N > T

• Eigendecomposition: C = 1
NV S2 V⊤ = VΛV⊤
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(Avoiding) Covariance Estimation

• Eigendecomposition: C = 1
NV S2 V⊤ = VΛV⊤

• Principal Components: RV

• Covariance of Returns with Principal components:

1

T
R⊤(US) =

1

T
VSU⊤US = V

S2

T
= VΛ. (6)

• Variance of Principal Components: 1
T(US)⊤US = Λ

• Punchline: β = V
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Betas: Identification and Time consistency
• Latent factors are only unique up to rotation and the same applies to betas

– We normalize them so that the cross-sectional average beta at each period is positive for
every factor to be sure we are tracking the same factors through time

• In any case, the null space is invariant to rotations
– We make the portfolio betas equal to zero so it does not matter which rotation we pick

• Betas are measurable at the end of the period

• We forecast them with a 3 year rolling AR(12) panel model to obtain out-of-sample
results

βi,k,t = ak,t +

12∑
j=1

λk,t−jβi,k,t−j + ui,k,t, (7)
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Extra: Characteristic-Based Betas

ri,t+1 = αi,t + β′
i,tft+1 + ϵi,t+1, i = 1, ..Nt, t = 1, ..T (8)

βi,t = Γ′zi,t, αi,t = Γ′
αzi,t (9)

Rt+1 = ZtΓα + ZtΓft+1 + ϵt+1 (10)
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Extra: Characteristic-Based Betas (RPCA)

Rt+1 = ZtΓα + ZtΓft+1 + ϵt+1 (11)

R̂t+1 ≡ (Z′
tZt)

−1Rt+1 (12)

=(Z′
tZt)

−1ZtΓα + (Z′
tZt)

−1ZtΓft+1 + (Z′
tZt)

−1ϵt+1

= Γα + Γft+1 + ϵ̂t+1

R̂t+1 − ¯̂Rt+1 = Γ(ft+1 − f̄t+1) + ϵ̂t+1 (13)
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Extra: Characteristic-Based Betas

• Singular vectors of the managed portfolios.

• Calculated using rolling windows.

• We forecast them with a 3 year rolling AR(12) panel model to obtain out-of-sample
results.
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So far

• Proxy for conditional expected returns for every stock at every point in time

• Betas with respect to the latent factors

• We want diversified portfolios sorted on expected returns and with beta of zero
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Diversified Hedged Portfolios

minimize
w

1

2
w′w (14)

s.t. w′ι = 0 (or = 1)

s.t. w′µ = µ0

s.t. w′βk = 0 (or = 1), k = 1, ...,K

A = [ι, µ,B]

a = [0, µ0, 0K×1]
′ (15)

w∗ = A(A′A)−1a (16)
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Data

• CRSP Monthly and Daily Returns
– We omit stocks whose size falls below the 20th percentile of the NYSE following Fama and

French (2008) and Kirby (2019) to avoid any concerns about liquidity.

• Compustat

• 1965-2021

• We use as predictors the variables from Freyberger, Neuhierl, and Weber (2020)
– Standardized cross-sectionally each month
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Factors

• Factors are latent

• To study them we project them on the return space using pure-plays

• The projection portfolios are zero-weight and have a beta of one with its respective
factor and zero otherwise

• Very similar to long high beta, short low beta

• If we make them unit cost, the first portfolio is 95% correlated with the market

• If we use wk = βk∑
i βi,k

, the variance is extremely large
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Factor Pure Plays

minimize
w

1

2
w′w (17)

s.t. w′ι = 0 (or = 1)

s.t. w′βj = 1

s.t. w′βk = 0 k ̸= j

A = [ι,B]

a = [0, e′j]
′, ei = (0, . . . , 0, 1, 0, . . . , 0) (18)

w∗ = A(A′A)−1a (19)
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Cumulative Percentage of the Variance Explained by the Principal
Components
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Average Time-Series R2 of Stock Returns against Reconstructed
Latent Factors
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Cumulative Log Returns of the Zero-Cost Latent Factors:1974–2021
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Descriptive Statistics of the Latent Factors: 1974–2021
Panel A: Value-Weighted Zero-Cost Portfolios

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5
Mean 0.28 0.14 0.02 0.07 0.06

t-statistic 1.50 1.36 0.26 0.81 0.65
Std. dev 4.44 2.39 2.02 2.15 2.06

Sharpe ratio 0.22 0.20 0.04 0.12 0.09

Panel B: Value-Weighted Unit-Cost Portfolios
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Mean 0.44 0.18 0.15 0.15 0.15
t-statistic 2.75 1.84 1.65 1.62 1.54
Std. dev 3.86 2.33 2.13 2.20 2.31

Sharpe ratio 0.40 0.27 0.24 0.23 0.22
CAPM alpha -0.13 0.12 -0.00 0.05 0.04 27 / 38



Intuition

• Latent factors carry a high variance by design

• Latent factors do not carry a substantial risk premium

• Hedging portfolios against all systematic risk reduces their variation without
reducing their returns

• Hedging portfolios against all systematic risk increases their Sharpe ratios
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Descriptive Statistics of the Portfolios: 1974–2021

Market Long-short Beta-neutral Beta Neutral
50 SVD 50 SVD + 5 RPCA

Mean 0.68 1.05 0.92 0.93
Std. dev 4.57 4.33 1.51 1.40

Sharpe ratio 0.52 0.84 2.12 2.31
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Sharpe Ratio as a function of the Number of Factors Hedged
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Cumulative Log Returns: 1974–2021
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Descriptive Statistics of the Portfolios: 1974–2021
Panel B: 1974–1999
Market Long-short Beta-neutral Beta Neutral

50 SVD 50 SVD + 5 RPCA
Mean 0.74 1.53 1.43 1.43

Std. dev 4.62 2.61 1.42 1.29
Sharpe ratio 0.56 2.03 3.50 3.84

Panel C: 2000–2021
Market Long-short Beta-neutral Beta Neutral

50 SVD 50 SVD + 5 RPCA
Mean 0.61 0.48 0.32 0.34

Std. dev 4.51 5.68 1.38 1.28
Sharpe ratio 0.46 0.29 0.79 0.91
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Descriptive Statistics of the Portfolios Linear Model on CRSP:
1974–2021

Panel A 1974–2021
Market Long-short Beta-neutral

50 SVD + 5 RPCA
Mean 0.68 0.68 0.75

Std. dev 4.57 2.98 1.32
Sharpe ratio 0.52 0.79 1.97
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Descriptive Statistics of the Portfolios Linear Model on CRSP:
1974–2021

Panel B: 1974–1999
Market Long-short Beta-neutral

50 SVD + 5 RPCA
Mean 0.74 1.20 1.15

Std. dev 4.62 2.29 1.32
Sharpe ratio 0.56 1.81 3.01

Panel C: 2000–2021
Market Long-short Beta-neutral

50 SVD + 5 RPCA
Mean 0.61 0.06 0.28

Std. dev 4.51 3.54 1.14
Sharpe ratio 0.46 0.06 0.84
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Remarks

• Sharpe ratios almost 4 times the market’s
– Hansen–Jagannathan bound makes it extremely complicated for consumption asset pricing

based models to explain them

• Latent Factors cannot explain the returns

• Reduced-form factor models?
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Time Series Regressions: Portfoliot = α +
∑

βiFi,t + εt
Long-Short Beta-Neutral Long-Short Beta-Neutral

Intercept 1.24∗∗∗ 0.92∗∗∗ 0.57∗∗∗ 0.82∗∗∗

(7.25) (14.09) (3.51) (13.04)

Mkt-RF −0.28∗∗∗ 0.01 −0.10 0.04∗

(−4.22) (0.64) (−1.95) (2.35)

SMB −0.01 0.01

(−0.09) (0.43)

HML 0.19 0.06

(1.74) (1.84)

RMW 0.38 0.08∗

(1.65) (2.57)

CMA 0.18 0.02

(1.02) (0.39)

Mom 0.58∗∗∗ 0.07∗∗∗

(7.12) (3.53)

Adj. R2 0.09 −0.00 0.45 0.06

Num. obs. 576 576 576 576
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Time Series Regressions: Portfoliot = α +
∑

βiFi,t + εt
Long-Short Beta-Neutral Long-Short Beta-Neutral

Intercept 0.38∗ 0.72∗∗∗ 0.33 0.84∗∗∗

(1.72) (10.18) (1.54) (12.36)

Mkt-RF −0.13∗∗ 0.05∗∗∗ 0.02 0.07∗∗∗

(−1.98) (2.89) (0.33) (3.63)

R_ME 0.21 0.04

(1.04) (1.64)

R_IA 0.22 0.09∗∗

(0.94) (1.98)

R_ROE 0.55∗∗∗ 0.05

(3.35) (1.43)

R_EG 0.43∗∗∗ 0.14∗∗∗

(2.87) (2.75)

SMB 0.00 0.00∗

(0.91) (1.73)

MGMT 0.01∗∗∗ 0.00∗∗∗

(4.46) (4.96)

PERF 0.01∗∗∗ 0.00∗∗∗

(7.94) (2.88)

Adj. R2 0.28 0.06 0.38 0.07

Num. obs. 576 576 516 516 37 / 38



Conclusion

• Taking zero systematic risk should produce zero returns but creates returns at least
as high as when taking systematic risk

• Sharpe Ratios are 2-4 times as large as the market

• Challenges the APT
- as well as the consumption-based asset pricing models (Hansen–Jagannathan
bound)

• Popular factor models cannot explain the returns

• But predictability seems to decline...
- McLean and Pontiff (2016)
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Appendix
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Supervised Machine Learning: Decision Trees

• Recursively split the data into non-intersecting regions one variable at a time.
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Decision Trees: Example of Depth 2
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Decision Trees: Regions
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Decision Trees: Regions
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Supervised Machine Learning: Decision Trees

• Only one parameter: depth (length of the decision tree (2 in the previous example)).

• Tends to over-fit when depth is too large.
– Does not give good out-of-sample predictions.

• Tends to under-fit when depth is too small.
– Bad in-sample and out-of-sample predictions.
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Supervised Machine Learning: Random Forest Regression

• Bootstrap of small decision trees.

• Each decision tree is trained on a different sub-sample and with different predictors.

• Flexible, non-parametric, and robust to over-fitting.

• Choose parameters in a data-driven way (cross-validation) before the forecasting
period.

• Train using rolling windows.
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Random Forest Regression: Interpretability

• Feature Importance
– How much each variable decreases the mean squared error
– Normalized to sum up to one
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Feature importance of the one-quarter-ahead forecast
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Interpretability: Impact of Variables

• How do features influence the predictions?

• Partial Dependence Plot
– For given value(s) of features S what is the average marginal effect on the prediction.
– What the model predicts on average when each data instance has a fixed value for that

feature
– f̂xS(xS) =

1
n
∑n

i=1 f̂(xS, x
(i)
C ) ≈ ExC

[
f̂(xS, xC)

]
=

∫
f̂(xS, xC)dP(xC)
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Partial Dependence Plot: Effect of Standardized Past Return on
Prediction
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Partial Dependence Plot: Effect of Standardized Sales on Prediction
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Partial Dependence Plot: Effect of Standardized Size on Prediction

Back
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Value-Weighted Time Series Regressions

Portfoliot = α+
∑

βiFi,t + εt

Long-Short Beta-Neutral Long-Short Beta-Neutral
Intercept 0.60∗∗∗ 0.55∗∗∗ 0.42∗∗ 0.52∗∗∗

(3.95) (7.77) (2.59) (7.17)

Mkt-RF −0.03 −0.03 −0.04 −0.04∗

(−0.56) (−1.81) (−1.05) (−2.02)

SMB 0.08 0.01

(1.35) (0.34)

HML 0.07 0.01

(0.93) (0.29)

RMW −0.25∗ −0.13

(−1.98) (−1.91)

CMA −0.24 −0.06

(−1.88) (−1.19)

Mom 0.48∗∗∗ 0.14∗∗∗

(6.14) (4.92)

Adj. R2 −0.00 0.01 0.36 0.18

Num. obs. 493 493 493 493
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Value-Weighted Time Series Regressions

Portfoliot = α+
∑

βiFi,t + εt

Long-Short Beta-Neutral Long-Short Beta-Neutral
Intercept 0.28 0.45∗∗∗ 0.25 0.46∗∗∗

(1.33) (5.84) (1.49) (5.82)

Mkt-RF −0.02 −0.03 0.04 −0.01

(−0.44) (−1.30) (1.02) (−0.43)

R_ME 0.18 0.05

(1.71) (1.06)

R_IA −0.22 −0.07

(−0.96) (−0.92)

R_ROE 0.13 −0.01

(0.75) (−0.09)

R_EG 0.35∗ 0.14∗

(2.19) (1.98)

SMB 0.13 0.03

(1.29) (0.64)

MGMT 0.04 0.02

(0.41) (0.68)

PERF 0.37∗∗∗ 0.09∗∗∗

(5.21) (3.66)

Adj. R2 0.05 0.03 0.16 0.05

Num. obs. 493 493 493 493
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t-statistics of Latent Factors
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Sharpe Ratios of Latent Factors
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Time-Series Regression on Latent Factors

Portfoliot = α+
∑

βiFi,t + εt

Long-Short Beta-Neutral Long-Short Beta-Neutral
(Intercept) 0.71∗∗∗ 0.73∗∗∗ 0.74∗∗∗ 0.73∗∗∗

(4.16) (8.08) (5.05) (9.30)

# Factors in Controls 10 50 10 50
Adj. R2 0.09 0.05 0.13 0.11

Num. obs. 493 493 493 493

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.1
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