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Virtue of Complexity

» The magic of machine learning (shown in recent years):

Machine Learning (ML) algorithms utilizing highly complex models can achieve accurate out
of sample forecast despite fitting the data perfectly

How does this square with what we have known for a long time that as the number of
parameters (P) increase and get closer to the number of observations (T) the out of
sample forecast quality deteriorates?

Remember: Ordinary Least Squares becomes unworkable when P>=T.

» In this paper: show the “virtue of complexity” for market timing
portfolio performance:

ML out of sample Sharpe ratio is everywhere positive, despite sometimes having a massively
negative R?, even for extreme levels of model complexity

When the model is mis-specified the out of sample Sharpe ratio generally increases with
complexity, even with minimal regularization
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Setting (a market timing problem)

Single risky asset:
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Estimating Method
(Representative Machine Learning Procedure)

» Ridge-regularized least squares
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» Ridgeless regression estimator
-1
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o Equivalent to the solution

H %Zt S,R..,, where H = Moore-Penrose pseodo-inverse of T )" .S/

When P<T OLS is the ridgeless solution
o P=T (Interpolation Boundary)

» OLS breaks down, but still unique least square solution that fits data exactly
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Mean Squared Error (MSE) — classical region

» Financial decomposition of MSE

MSE()=E l(ﬁw — .s*;;f)“ |.7’} = E[R%,|] — 2 E[#Re1|B] + E[72]5] .

Timing Timing
Expected Return Leverage

» Classical statistical decomposition into bias/variance tradeoff:

MSE ()= (Bias( B))2 +Var(p)
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Machine Learning and Double Descent

» Measuring complexity (P- number of Parameters, T- number of periods)Z

c= lim P/T
T,P>x©
MSE(z¢) = lim E [(Rt—H _ St;),( . -))- “( i )]
T.P—oo, P/T—e
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R2 and Leverage

00 or—m——~——— ij_ — ——Ridgeless [ 10.00

—2z=10.01

10 L z=01 |] 8.00
—2z=10

20+ =50 H 6.00
— — True

3.0 f c=1 I 400

40 t 1 200

-5.0 : ' : : 0.00 =

0 2 4 6 8 10 6 8 10
C C

Figure 1: Expected Out-of-sample B? and Norm of Least Squares Coefficient

c= lim P/T

T,P—0

@\/Vharton Jacobs Levy Equity Management Center for Quantitative Financial Research



Fully Specified Model

Expected Return Volatility
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Figure 2: Expected Out-of-sample Risk and Return of Market Timing

Sharpe Ratio
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Figure 3: Expected Out-of-sample Sharpe Ratio of Market Timing
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Mis-specified Model (observe only P,out of P

parameters im%/-4)
» X-axis: holds c fixed and varies q

Expected Return Volatility
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Figure 5: Expected Out-of-sample Timing Strategy Risk and Return From Mis-specified
Models
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Expected Out-of-sample Timing Strategy

Sharpe Ratio From Mis-specified
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Empirical Exercise

» Validates the theory
» For high complexity models

o Produces high out of sample monthly
« Sharpe ratios (0.4),
* Alphas (1%-2%),
« Information ratios (0.25-0.3)
o Strategy is long-only at heart: almost never bet on market downturns
o Strategy learns to divest leading up to recessions (14/15 NBER recession dates)

« Essentially zeros out positions

» Latter part of the sample:

o lower average returns and information ratios, fewer buying recommendations, and
smaller position.
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Comments - Theory

» Can the analysis be extended to a setting with portfolio
constraints.

o The two step procedure of first estimating loadings and then taking
them as given to optimize the portfolio is no longer valid in general.

o Directly maximize out of sample Sharpe ratio.

» Can the restriction of zero third moments of €,,, and X, be relaxed.

o Doesn’t seem to be present in some of the other papers that consider estimation
in the over-parametrized region.

» Consider extending to generalized (weighted) ridge
regressions, as in Wu and Xu (2020), where instead of the
regularizing term z/ one adds a weighted regularization term zX
where X ' is an optimally chosen weighting matrix.
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Comments - Analysis

» For mis-specified model consider adding graphs which do not
hold ¢ fixed (¢= lim P/T,qzlimPl/P)

T,P—>x T—o

o Instead set c=q*Cmax so that when varying g both ¢ and g increase

» Add to graphs results for the Sharpe ratio maximizing shrinkage
parameter z*

o Consider adding a plot showing optimal shrinkage z*
» In empirical analysis:

o Any way to tease out what leads to the strategy being essentially long only, and what
drives divestitures prior to recessions.

» Add confidence intervals to figures 7 and 8.
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Comments - Exposition

» Consider shortening Section 4.1, as the key insights in this section have been
shown in the recent literature (Heistie et al. (2019), Wu and Xu(2020) and others).

o Readers will get faster to the novel insights

» A Dbit less emphasis on the Ridgeless results

o Seem to always deliver the lowest out of sample Sharpe ratios; both in fully specified and in mis-specified
models

» Explain in the text where the restrictions on the third-moments of
¢,,, and X, have a bite.

o At this point, seems central for Proposition 1.

@\/\fharton Jacobs Levy Equity Management Center for Quantitative Financial Research




Conclusion

» Very elegant asymptotic theory establishing analytical
characterization of expected returns, volatilities and Sharpe ratios,
In a setting with a single risky asset

» Extends recent double-descent literature to portfolio timing

o Both fully specified and mis-specified settings considered

» Highlights virtues of complexity and machine learning for portfolio
timing problems

» Empirical exercise is a nice validation of the theory

o The ML strategy somehow able to identify recessions ex-ante.
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