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Ø The magic of machine learning (shown in recent years):

Machine Learning (ML) algorithms utilizing highly complex models can achieve accurate out 
of sample forecast despite fitting the data perfectly

How does this square with what we have known for a long time that as the number of 
parameters (P) increase and get closer to the number of observations (T) the out of 
sample forecast quality deteriorates?

Remember: Ordinary Least Squares becomes unworkable when P>=T.

Ø In this paper: show the “virtue of complexity” for market timing 
portfolio performance:

ML out of sample Sharpe ratio is everywhere positive, despite sometimes having a massively 
negative R2, even for extreme levels of model complexity

When the model is mis-specified the out of sample Sharpe ratio generally increases with 
complexity, even with minimal regularization 

Virtue of Complexity
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Single risky asset:

State variables:

Loadings:

Timing Strategy:

Main Focus: Evaluation of

Setting (a market timing problem)
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Ø Ridge-regularized least squares

Ø Ridgeless regression estimator

o Equivalent to the solution 

When P<T OLS is the ridgeless solution

o P=T (Interpolation Boundary)

• OLS breaks down, but still unique least square solution that fits data exactly

Estimating Method 
(Representative Machine Learning Procedure)

1
1

1
, Moore-Penrose pseodo-inverse of T T

t t t tt t
H S R where H S S
T

-
+ =å å

Jacobs Levy Equity Management Center for Quantitative Financial Research 4



Mean Squared Error (MSE) – classical region
Ø Financial decomposition of MSE

Ø Classical statistical decomposition into bias/variance tradeoff: 

( ) ( )( ) ( )2ˆ ˆ ˆMSE Bias Varb b b= +
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Ø Measuring complexity (P- number of Parameters, T- number of periods): 

Machine Learning and Double Descent
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R2 and Leverage
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Fully Specified Model
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Mis-specified Model (observe only P1out of P 
parameters           ) 1lim

T

P qP®¥
=

Ø X-axis: holds c fixed and varies q
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Ø Validates the theory

Ø For high complexity models 
o Produces high out of sample monthly 

• Sharpe ratios (0.4), 

• Alphas (1%-2%), 

• Information ratios (0.25-0.3)

o Strategy is long-only at heart: almost never bet on market downturns

o Strategy learns to divest leading up to recessions (14/15 NBER recession dates)

• Essentially zeros out positions

Ø Latter part of the sample: 
o lower average returns and information ratios, fewer buying recommendations, and 

smaller position.

Empirical Exercise 

Jacobs Levy Equity Management Center for Quantitative Financial Research 10



Ø Can the analysis be extended to a setting with portfolio 
constraints.
o The two step procedure of first estimating loadings and then taking 

them as given to optimize the portfolio is no longer valid in general.

o Directly maximize out of sample Sharpe ratio.

Ø Can the restriction of zero third moments of
o Doesn’t seem to be present in some of the other papers that consider estimation 

in the over-parametrized region.

Ø Consider extending to generalized (weighted) ridge 
regressions, as in Wu and Xu (2020), where instead of the 
regularizing term      one adds a weighted regularization term       
where       is an optimally chosen weighting matrix.

Comments - Theory

1 ,and  be relaxed.t i tXe +
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Ø For mis-specified model consider adding graphs which do not 
hold c fixed (                ,              ) 
o Instead set c=q*Cmax so that when varying q both c and q increase 

Ø Add to graphs results for the Sharpe ratio maximizing shrinkage 
parameter z*
o Consider adding a plot showing optimal shrinkage z*  

Ø In empirical analysis: 
o Any way to tease out what leads to the strategy being essentially long only, and what 

drives divestitures prior to recessions.

Ø Add confidence intervals to figures 7 and 8.

Comments - Analysis
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Ø Consider shortening Section 4.1, as the key insights in this section have been 

shown in the recent literature (Heistie et al. (2019), Wu and Xu(2020) and others).

o Readers will get faster to the novel insights

Ø A bit less emphasis on the Ridgeless results

o Seem to always deliver the lowest out of sample Sharpe ratios; both in fully specified and in mis-specified 

models

Ø Explain in the text where the restrictions on the third-moments of

o At this point, seems central for Proposition 1. 

Comments - Exposition

1 ,and  have a bite.t i tXe +
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Ø Very elegant asymptotic theory establishing analytical 
characterization of expected returns, volatilities and Sharpe ratios, 
in a setting with a single risky asset

Ø Extends recent double-descent literature to portfolio timing
o Both fully specified and mis-specified settings considered

Ø Highlights virtues of complexity and machine learning for portfolio 
timing problems 

Ø Empirical exercise is a nice validation of the theory
o The ML strategy somehow able to identify recessions ex-ante.

Conclusion
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