A Production-Based Economic Explanation for the Gross Profitability Premium

Discussion by
Jessica A. Wachter

September 27, 2019
What is the profitability premium?

First define profitability

- Gross Profitability (GP): Revenue − Cost of goods sold
- This will be large for large firms
- So look at

\[
GP/A := \frac{\text{Revenue} - \text{Cost of goods sold}}{\text{Total assets}}
\]
What is the profitability premium?

- Take public US firms (CRSP universe), and sort into 5 portfolios based on GP/A:
 - Portfolio 1: Low GP/A
 - Portfolio 5: High GP/A

Average portfolio return over the next month:
- Portfolio 1: 4.8%
- Portfolio 5: 8.5%

Difference: 3.7%

α relative to the 3-factor model: 6.4%

This finding, by Novy-Marx (2013), has generated much attention. (>1000 Google scholar citations)
What is the profitability premium?

- Take public US firms (CRSP universe), and sort into 5 portfolios based on GP/A:
 - Portfolio 1: Low GP/A
 - Portfolio 5: High GP/A
- Average portfolio return over the next month

Portfolio 1: 4.8%
Portfolio 5: 8.5%
Difference: 3.7%
\(\alpha \) relative to the 3-factor model 6.4%

This finding, by Novy-Marx (2013), has generated much attention. (> 1000 Google scholar citations)
What is the profitability premium?

- Take public US firms (CRSP universe), and sort into 5 portfolios based on GP/A:
 - Portfolio 1: Low GP/A
 - Portfolio 5: High GP/A
- Average portfolio return over the next month
 - Portfolio 1: 4.8%

This finding, by Novy-Marx (2013), has generated much attention. (>1000 Google scholar citations)
What is the profitability premium?

- Take public US firms (CRSP universe), and sort into 5 portfolios based on GP/A:
 - Portfolio 1: Low GP/A
 - Portfolio 5: High GP/A
- Average portfolio return over the next month
 - Portfolio 1: 4.8%
 - Portfolio 5: 8.5%

This finding, by Novy-Marx (2013), has generated much attention. (> 1000 Google scholar citations)
What is the profitability premium?

- Take public US firms (CRSP universe), and sort into 5 portfolios based on GP/A:
 - Portfolio 1: Low GP/A
 - Portfolio 5: High GP/A

- Average portfolio return over the next month
 - Portfolio 1: 4.8%
 - Portfolio 5: 8.5%
 - Difference: 3.7%

This finding, by Novy-Marx (2013), has generated much attention. (>1000 Google scholar citations)
What is the profitability premium?

- Take public US firms (CRSP universe), and sort into 5 portfolios based on GP/A:
 - Portfolio 1: Low GP/A
 - Portfolio 5: High GP/A
- Average portfolio return over the next month
 - Portfolio 1: 4.8%
 - Portfolio 5: 8.5%
 - Difference: 3.7%
 - α relative to the 3-factor model 6.4%

This finding, by Novy-Marx (2013), has generated much attention. (1000 Google scholar citations)
What is the profitability premium?

- Take public US firms (CRSP universe), and sort into 5 portfolios based on GP/A:
 - Portfolio 1: Low GP/A
 - Portfolio 5: High GP/A
- Average portfolio return over the next month
 - Portfolio 1: 4.8%
 - Portfolio 5: 8.5%
 - Difference: 3.7%
 - α relative to the 3-factor model 6.4%
- This finding, by Novy-Marx (2013), has generated much attention. (> 1000 Google scholar citations)
Why is this a puzzle?

- P_t is the stock price today.
- P_{t+1} is the stock price in one month
- D_{t+1} is the dividend in one month
- Return over the month:

$$R_{t+1} = \frac{P_{t+1} + D_{t+1} - P_t}{P_t} = \frac{D_{t+1}}{P_t} + \frac{P_{t+1} - P_t}{P_t}$$

- The return is the dividend yield plus the price appreciation.
Why is this a puzzle?

- P_t is the stock price today.
- P_{t+1} is the stock price in one month.
- D_{t+1} is the dividend in one month.
- Return over the month:

$$R_{t+1} = \frac{P_{t+1} + D_{t+1} - P_t}{P_t} = \frac{D_{t+1}}{P_t} + \frac{P_{t+1} - P_t}{P_t}$$

- The return is the dividend yield plus the price appreciation.
- High GP/A \Rightarrow High D_{t+1}/P_t \Rightarrow High R_{t+1}
Gordon Growth Model

- \(g \) = growth rate of dividends, \(r \) = discount rate
- Stock price:
 \[
P_t = \frac{E_t[D_{t+1}]}{r - g}
 \]
- Stock return:
 \[
 R_{t+1} = \frac{D_{t+1}}{P_t} + \frac{P_{t+1} - P_t}{P_t}
 \]
- Expected stock return:
 \[
 E_t[R_{t+1}] = \frac{E[D_{t+1}]}{P_t} + g = r - g + g = r
 \]
Gordon Growth Model

- \(g \) = growth rate of dividends, \(r \) = discount rate
- Stock price:
 \[
 P_t = \frac{E_t[D_{t+1}]}{r - g}
 \]
- Stock return:
 \[
 R_{t+1} = \frac{D_{t+1}}{P_t} + \frac{P_{t+1} - P_t}{P_t}
 \]
- Expected stock return:
 \[
 E_t[R_{t+1}] = \frac{E[D_{t+1}]}{P_t} + g = r - g + g = r
 \]
- Efficient market hypothesis (EMH) \(\Rightarrow P_t \) incorporates \(E_t[D_{t+1}] \).
EMH \Rightarrow \text{only risk can determine expected returns}

This paper has an Arbitrage Pricing Theory-type model with profitability, growth, and investment factors.

Expected return on portfolio j:

$$r_j = \beta_{xj} \gamma_x + \beta_{yj} \gamma_y + \beta_{sj} \gamma_s$$

- $\gamma_x = \text{premium for profitability}$
- $\gamma_y = \text{premium for growth}$
- $\gamma_s = \text{premium for capital investment}$
This paper’s explanation (cont.)

Model:

\[r_j = \beta_{xj}\gamma_x + \beta_{yj}\gamma_y + \beta_{sj}\gamma_s \]

- The authors derive the βs from first principles.
- They show that firms with high GP/A have high β_{xj} in the model.
- They find supporting evidence in the data.
- If γ_x is high, high GP/A firms will have high returns.
The firm has physical capital K

The firm chooses intermediate inputs E to maximize profit

$$\pi = X \left[(ZE)^{\frac{n-1}{\eta}} + K^{\frac{n-1}{\eta}} \right]^{\frac{\eta}{\eta-1}} - EP$$

where $\eta > 0$ the elasticity of substitution between E and K.

Think of η as a low number (they are far from perfect substitutes)

An aggregate shock is a shock to P.

E becomes expensive \Rightarrow firm substitutes toward K \Rightarrow this hurts production because scale is suboptimal.

High Z firms suffer (relatively) more
This is very plausible.

However, consider the pattern in market betas in the data.

- Lowest productivity portfolio: $\beta = 0.92$
- Middle portfolios, $\beta > 1$.
- Highest-productivity portfolio: $\beta = 0.94$

Standard deviations follow a similar pattern

The very highest profitability firms have low risk, not high risk.
Alternative explanations

1. βs are wrong
2. The EMH fails
3. The result is spurious
Alternative explanation 1: βs are wrong

- If returns are normally distributed, βs and standard deviations are measured with enormous precision.
 - Much more so than expected returns
- If returns have fat tails, rare events can lead true βs to differ from observed βs
- Perhaps highly profitable firms do especially badly in times of market stress.
Alternative explanation 2: EMH Failure

- Some firms receive a positive shock to their profitability.
- For these firms, the shock means that profitability is not just high today, but also high next month.
- Investors underestimate this persistence (persistence is hard to measure).
- Thus they under-react to profitability news today.
- Next month, they receive more “good news,” implying high returns.
- They don’t understand this “good news” was predictable in advance.
Alternative explanation 3: spuriousness

- Profitability barely clears the hurdle for statistical significance relative to the CAPM.
- The t-statistic on the α relative to the CAPM is 2.2.
- 3% per annum is half the size of value and a third of momentum.
- The t-statistic relative to the 3-factor model is higher, but we have no reason to think that the 3-factor model is true in the first place.
- Since 2014, the anomaly has been significantly reduced.
Researchers advance their career by publishing articles in scientific journals.

To be published, a result has to be novel.

Researchers look around for novel results.

If you search through 100 combinations of spurious results, 5% will clear the significance hurdle by chance.

This may be the case with profitability.
Conclusion

- Profitability is an interesting and subtle anomaly
- You need to understand quite a bit of finance to understand why it even is an anomaly.
- This paper offers an explanation for this anomaly.
- Because the benchmark theory is the EMH, this explanation is based on risk
- Specifically it is based on the production risks these firms take.
- Alternative explanations: rare events, under-reaction, or that the finding is simply spurious to begin with.
- Practical consequence: If you have a value strategy, might want to consider a profitability strategy as a hedge.