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So many anomalies, so many questions...

• What kind of factor 
model can explain this 
zoo?  Can such models 
be rationalized?

• Which anomalies are 
redundant?  Which have 
synergies?

• What share of these 
returns is due to data-
mining?

We don’t address any of these



Our question is more basic:

How much profit should investors expect (in the future)

from investing in anomalies?

(We just want to know the expected return)



Existing literature does not answer the simple question:

The Standard Approach The Problem
Average returns over decades 
of history

to 

Data mining bias + investor 
learning
=> Can’t expect historical
returns persist into the 
future
(McLean and Pontiff 2016)

Measure gross returns
(before trading costs)

Gross returns are not profits



This Paper:

We study post-publication returns net of costs for 120 anomalies 

Costs = effective bid-ask spreads (TAQ/ISSM)

Post-publication net returns are tiny:

Average investor should expect tiny profits from the average anomaly



Related Literature

Many, many papers study trading costs of anomalies

• Stoll and Whaley (1983); Ball, Kothari, and Shanken (1995); Knez and Ready 
(1996); Pontiff and Schill (2001); Korajczyk and Sadka (2004); Lesmond, Schill, 
and Zhou (2004); Hanna and Ready (2005); Frazzini, Israel, Moskowitz (2015); 
Novy-Marx and Velikov (2016) ...

What’s new: by far the most comprehensive set of anomalies (120)

• Allows for inferences regarding short post-publication samples

• Get us much closer to expected profits 



Caveats

We do not attempt to study

• Implementation shortfall (Frazzini et al 2015; Briere et al 2019)

• Price impact (Frazzini et al 2015; Briere et al 2019)

• Combining multiple anomalies (DeMiguel et al Forthcoming)

Our goal is a simple benchmark expected return

Our benchmark: uses effective bid-ask spreads for single strategies

• lower bound cost for the average trader, irrespective of portfolio size

• starting point for studying more complex issues



Roadmap

1. Anomalies data and trading cost measures

2. Results 
a) Average published strategy 

b) Average cost-mitigated strategy 

c) Selected cost-mitigated strategies (adjusted for selection bias)



Anomalies data and trading cost measures



Anomalies Data

Begin w/ Chen and Zimmermann’s (2018) 156 replicated characteristics

• Remove 34 that are not continuous

• Need cost mitigation to understand costs, need continuity for cost mitigation 

• Remove 2 that are somewhat hard to call anomalies

• CAPM beta

• Tail risk beta (Kelly and Jiang 2014)

Remaining: 120 published anomalies

• 50% focus on Compustat accounting variables

• 30% use purely price data

• 20% use analyst forecasts, institutional ownership, volume, etc

Short post-publication samples require a large number of anomalies



Trading Costs: Basics

Procedure:
1. Track portfolio weights over time

2. Whenever position is entered or exited: assume half the effective bid-ask spread is paid

Effective bid-ask spread:

[Effective Spread] = 2[ log[Trade Price] − log[Quote Midpoint] ]

• For buys: trade price > midpoint (pay too much)

• For sells: trade price < midpoint (earn too little)



Interpretation: Lower bound cost to average trader

Lower bound cost
• Omits shorting costs and price impact

• Even the tiny net returns we find are unattainable to many traders

For average trader:
• Technically, a small liquidity demander

• Sophisticated arbitragers may supply liquidity (and bear other costs) 
(Frazzini, Israel, and Moskowitz 2018; Cont and Kukanov 2017)

Reminder: our goal is a simple benchmark expected return



Trading Costs: Data

Post-publication costs: high-frequency data
• 2003-2016: Daily TAQ (milli/nano-second timestamps)

• 1993-2003: Monthly TAQ (second timestamps)

• 1983-1992: ISSM

― NASDAQ data starts in 1987

In-sample costs: average 4 low frequency proxies (1926-1982)
• Gibbs (Hasbrouck 2009)

• High-low spread (Corwin and Schultz 2012)

• Volume-over-volatility (Kyle and Obizhaeva 2016)

• Close-high-low (Abdi and Ranaldo 2017)



High-frequency data is important for post-publication samples

• Low-freq spreads are 25-
50 bps upward bias in 
recent data

Low-Frequency Bias Over Time



Our effective spread over time

• Huge spreads in 1930s-
1940s

• Spreads rise in 1970s as 
NASDAQ enters CRSP

• Spreads plummet in 
2000s with electronic 
trading



Is the average published strategy profitable?



Published Strategies

Almost all anomaly publications focus on equal-weighting

• (McLean and Pontiff 2016; Chen and Zimmermann 2018)

And use simple strategies:

• Long/short stocks in extreme quantiles

• Rebalance when signal updates

Same approach here: equal-weighted long-short quintiles 

+ rebalancing when signal updates

• Quick, simple picture of net returns

• Next: cost-mitigated strategies



Result 1: Average investors should expect no profit from the 
average published strategy

• Standard errors are 
small

• Net returns are 
negligible even in-
sample

• Decomposition

[Net Return] ≈ [Gross Return] − [Turnover] × [Spread]

= 30 bps − 0.30 × 111 bps = −3 bps per month.



Why are trading costs so large post-decimalization?

Decimalization: spread ≈ $0.01, price ≈ $20 ⇒ spread ≈ 5 bps.

But 5 bps represents the mode
• Spreads have an extremely long 

right tail

• Mean spread = 67 bps
• Published strategies require 

trading across the entire 
distribution



Recap: is the average published strategy profitable?

No.
• 30% turnover × 111 bps spread wipes out profits

But these strategies completely ignore costs 

Can smarter strategies earn profits?



Is the average cost-mitigated strategy profitable?



Cost Mitigation Overview

We combine two techniques
1. Value-weighting: reduces spreads paid

2. Buy/Hold Spreads: reduces turnover

These two together outperform several other cost mitigations
• (Novy-Marx and Velikov 2016, 2018)

Empirical Exercise
1. Optimize two techniques in-sample

2. Re-examine post-publication net returns



(Magill-Constantinides 1976; Brandt, Santa-Clara, Valkanov 2009)

The Buy/Hold Spread: mimics optimal trading under trading costs

Buy/Hold 20/30

Hold Long / Enter Long

Exit / Ignore

Hold Long / Ignore

Strongest Signal

80th Pct

Weakest Signal

20th Pct

70th Pct

30th Pct

Hold Long / Enter Long

Exit / Ignore

Hold Short / Enter Short

Hold Short / IgnoreExit / Ignore

Exit / Ignore

Hold Short / Enter Short

Long-Short Quintiles 



Optimization Overview

Choose weighting and buy/hold spreads to maximize in-sample net returns 

More formally:

where

Specification aims to balance performance and robustness



Before cost-mitigation (in-sample)

Average net return     

= 5 bps/month



After cost-mitigation (in-sample)

Average net return     

= 38 bps/month

Cost-mitigation works 
well (in-sample)



Result 2: Average investors should expect tiny profits from 
the average cost-mitigated strategy

• Sizable in-sample net 
returns plummet 
around publication

• Average 4-13 
bps/month after 
publication, depending 
on how you take the 
average



Selected Cost-Mitigated Strategies



Size, B/M, and momentum are among the better performers

• Consistent with recent 
papers that measure 
implementation shortfall

• Frazzini et al (2015)

• Briere et al (2019)

• Are size, value, and 
momentum special?

• Or are they lucky?

• What about idiovol or 
distress (FailurePr)?



Final question: Can we expect selected strategies to be profitable?

Tricky question: need to 
adjust for selection 
(hindsight) bias

We use two adjustments

• Forecast post-pub 
returns using in-sample 
information

• Empirical-Bayes 
adjustment



Bias adjustment 1: Forecasting post-pub net returns

Exercise:

1. Sort anomalies on 
in-sample turnover or 
net return

2. Examine mean post-
publication net returns

Even the best predictors provide only ≈ 20 bps/month 

• Excludes shorting costs, price impact

• Shorting costs average 10-20 bps (Cohen et al 2007)



1. Model unobserved 
expected return

2. Estimate
by method of moments

3. Bayes formula gives bias 
adjusted expected return

Bias adjustment 2: Empirical Bayes adjustment
Uses empirical Bayes / “big-data” methods (Efron 2010; Azevedo et al 2019; Liu et al 
Forthcoming)



Bias adjustment 2: Empirical Bayes adjustment

Once again:

• Even the best predictors 
provide only ≈ 20 
bps/month 

• Restricted to value-
weighting => 7 bps

Result 3: average investors should expect only tiny profits from selected, cost-
mitigated anomaly strategies.



Intuition: Why is selection bias so large?

Distribution is close to the null 
of no predictability

• # |t-stats| > 2.0     = 13%

• No predictability => 5%

Most of the heterogeneity can 
be explained by noise / luck



Conclusion
We study post-publication returns net of costs for 120 anomalies 

Post-publication net returns are tiny

Average investor should expect tiny profits from average anomaly 

Even the best anomalies provide only tiny net returns


