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Abstract

We study the post-publication trading costs of 120 stock market anoma-
lies. Trading costs use effective bid-ask spreads from high-frequency ISSM
and TAQ data when available and average four low-frequency proxies oth-
erwise. The average equal-weighted long-short portfolio nets -3 bps per
month post-publication after costs. Optimized cost mitigation using value-
weighting and buy/hold spreads dramatically improves net returns in-
sample but nets only 4 to 12 bps post-publication on average. The strongest
cost-optimized anomalies in-sample net just 10-20 bps post-publication.
These results show that the average investor should expect tiny profits (al-
ternatively, a tiny risk premium) from investing in any individual anomaly.
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1. Introduction

This paper adjusts the post-publication returns of 120 stock market anoma-
lies for trading costs. We find that the average equal-weighted long-short quin-
tile portfolio has a negative return of -3 bps per month post-publication and
net of costs. Using portfolios that optimally mitigate costs with value-weighting
and/or a buy/hold spread rule following Novy-Marx and Velikov (2016), the av-
erage post-publication net return is a tiny 4 to 13 basis points per month (0.48%

to 1.56% per year), depending on how the average is calculated.

These conclusions come from adjusting the returns of anomalies for effective
bid-ask spreads. In general, trading costs are a high-dimensional object that de-
pends on the trader under consideration. We focus on effective spreads because
they lead to a simple interpretation: our costs are the lower bound for the aver-
age trader who uses market orders. Thus, even the tiny net returns we compute
may be unachievable for many traders. Indeed, short sale costs average 10-20 ba-
sis points per month (Cohen, Diether, and Malloy 2007; Drechsler and Drechsler

2016), and would likely eliminate the remaining profits.

Post-publication net returns are important because they tell us how much
profit we should expect from anomalies in the future. In a practical sense, these
are the only returns that matter. Gross returns (before trading costs) are sim-
ply not profits. In-sample net returns are largely not available to investors, as
anomalies are typically discovered at the end of their in-sample periods. Only
by measuring post-publication net returns can we get a sense of future anomaly

profits, free of trading costs and publication effects like data-mining bias.

More generally, post-publication net returns isolate the permanent and risk-
based component of predictability. Roughly 50% of the average anomaly return
is transient and disappears after publication, suggesting that mispricing and
data-mining bias play a large role (McLean and Pontiff 2016). The remaining
50%, then, is due to more permanent effects like risk and market frictions. As
described by Cochrane (1999), “[ilf a high average return comes from exposure
to risk, ... Even if the opportunity is widely publicized, investors will not change
their portfolio decisions, and the relatively high average return will remain.” Iso-

lating this risk component, however, requires first removing trading costs.

We measure trading costs using high frequency (HF) data whenever it is avail-

able. Our HF data combines data from the Institute for the Study of Security



Markets (ISSM) and NYSE’s Trade and Quote (TAQ) database. Nearly all of our
post-publication trading costs use HF data, as 97% of the anomalies we study are
published after 1983, when the HF data begins. When HF data is unavailable,
we use the average of four low-frequency (LF) proxies: Hasbrouck’s (2009) Gibbs
estimate; Corwin and Schultz’s (2012) high-low spread; Fong, Holden, and To-
bek’s (2017) implementation of Kyle and Obizhaeva’s (2016) invariance hypothe-

sis; and Abdi and Ranaldo’s (2017) close-high-low measure.

The effect of trading costs can be understood in the following back-of-the-
envelope calculation. The typical anomaly hedge portfolio requires turning over
15% of its positions on each leg (long and short) each month, and each of these
transactions requires paying a bid-ask spread. The average spread paid in the
post-publication sample is about 100 bps. These costs are weighed against the
average post-publication gross return of 30 bps per month. Putting these num-

bers together, we get the following back-of-the envelope calculation:

[Net Return] = [Gross Return] — 2 x [Each Leg’s Turnover] x [Bid-Ask Spread]
=30 bps—2x0.15x 100 bps
=0 bps per month.

Thus, trading costs wipe out the remaining post-publication predictability.

One may be surprised that bid-ask spreads are so large post-publication,
given the tiny spreads of the post-decimalization era. The distribution of spreads
has a very longright tail, however, and published anomaly strategies require trad-
ing all over the spread distribution. As a result, the typical spread paid by equal-
weighted anomaly strategies in 2014 is 67 bps, an order of magnitude larger than

the modal spread of 5 bps.
Perhaps published strategies can be made profitable if they are modified to

avoid trading costs. To examine this question, we mitigate transaction costs by
applying value-weighting and/or a buy/hold spread following Novy-Marx and
Velikov (2016). Value-weighting reduces costs by reducing the average spread
paid. Buy/hold spreads reduce costs by reducing turnover, mimicking the opti-
mal portfolio rule in the presence of transaction costs (Magill and Constantinides
1976; Brandt, Santa-Clara, and Valkanov 2009). We choose stock weighting and
buy/hold spread parameters to maximize net returns in-sample. This optimiza-
tion increases the average net return in-sample from 5 bps to 38 bps per month,
consistent with Novy-Marx and Velikov (2016), who find that buy/hold spreads
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outperform a variety of other cost mitigation techniques.

Post-publication, however, the average cost-mitigated anomaly net return is
only 13 bps. Moreover, even these modest profits are fragile. Net returns tend to
decay as time-since-publication increases. As a result, the average net return is
sensitive to the details of the averaging. The 13 bps mentioned previously focuses
on the relatively high net returns in the years soon after publication, as it comes
from first averaging across time and then averaging across anomalies. Averaging

across anomalies and then averaging across time leads to a tiny 4 bps net return.

Net returns are also concentrated among anomalies that perform better us-
ing equal-weighting. Indeed, restricting our cost-mitigated strategies to using
value-weighting leads to an average post-publication net return of 4 to 7 bps,

once again depending on how the average is taken.

So far, we've discussed results that average across all anomalies. Averaging
keeps the analysis simple, but ignores heterogeneity. Indeed, we find that size,
B/M, and momentum performed well post-publication net of trading costs (con-
sistent with Frazzini, Israel, and Moskowitz 2015 and Briere, Lehalle, Nefedova,
and Raboun 2019). Could there be a subset of exceptional anomalies that sur-

vives trading costs post-publication?

Answering this question is not straightforward, as focusing on the right tail of
the net return distribution introduces selection bias. This bias is especially pro-
nounced in the relatively short post-publication samples. To control for selec-
tion bias, we examine the best-performing anomalies using two approaches: (1)
we attempt to forecast post-publication net returns using in-sample information
and (2) we estimate a simple model that explicitly accounts for selection bias fol-
lowing the empirical Bayes literature (Efron 2012; Azevedo, Deng, Montiel Olea,
and Weyl 2019; Liu, Moon, and Schorfheide Forthcoming).

Both methods lead to a similar result: the strongest anomalies deliver only
10-20 bps of net returns post-publication. Overall, the average investor should
expect little profit in the future from published anomalies, even before any risk
adjustment is made. Alternatively, there is little room for anomaly risk premiums

for the average investor, once limits to arbitrage are accounted for.

Our results paint a picture of a dynamic equilibrium process, but one more
in line with Lo’s (2004) adaptive market hypothesis than standard dynamic equi-
librium models (Campbell and Cochrane 1999; Bansal and Yaron 2004). Every
month, academic researchers and market participants find imperfections in the



existing market equilibrium. After discovery, the net returns of these imperfec-

tions are traded away, leading to a new equilibrium.

We do not show that all anomalies are unprofitable to all investors after pub-
lication. A perfectly efficient market is impossible, as shown by Grossman and
Stiglitz (1980). Rather, our results measure the magnitude of anomaly profits
available to the average trader. These profits are not only relevant for the ma-
jority of market participants, but also informative about the overall efficiency of
financial markets, imperfect as they must be. Indeed, our finding that the av-
erage trader should expect to earn negligible anomaly profits is closely in-line
with the predictions of Garleanu and Pedersen’s (2018) refinement of the Gross-
man and Stiglitz (1980) model: in an “efficiently inefficient” market, the average

trader is best served by investing passively.

Related Literature Our paper is closely related to Novy-Marx and Velikov
(2016), who also study effective spread costs for a broad array of anomalies. We
differ from Novy-Marx and Velikov in that (1) we have a much more accurate
measure of trading costs that combines several HF and LF measures, and (2) we
use a much larger set of anomalies. These two improvements allow us to make
strong conclusions about post-publication net returns, the profits available to
average investors in the future, and the risk premium average investors should
expect. HF data is important for accuracy. LF spreads are highly correlated with
HF spreads, but produce large root-mean-squared errors (Fong, Holden, and
Trzcinka 2017). Indeed, we find that low frequency spreads are biased upward

by 25-50 bps in the post-decimalization sample (Appendix A.4).
Another closely related paper is DeMiguel, Martin-Utrera, Nogales, and Up-

pal (2017), who study trading costs and 50 anomaly signals from a portfolio
choice perspective. They achieve out-of-sample annual Sharpe ratios in excess of
1.0 net of trading costs using state-of-the-art portfolio optimization techniques.
In contrast, our study’s long-short portfolios are more accessible to the average
trader. Moreover, while DeMiguel et al focus on Brandt, Santa-Clara, and Valka-
nov’s (2009) reduced form trading costs, our study combines several data sources
to create a more accurate stock-level measure. Nevertheless, our studies comple-
ment each other, as they both emphasize the importance of thinking of anoma-

lies in combination, as each anomaly on its own is not especially powerful.

More broadly, our paper builds on a large literature that finds that mi-



crostructure frictions have a large effect on anomaly returns (Stoll and Whaley
1983; Schultz 1983; Ball, Kothari, and Shanken 1995; Knez and Ready 1996; Pon-
tiff and Schill 2001; Korajczyk and Sadka 2004; Lesmond, Schill, and Zhou 2004;
and Hanna and Ready 2005; McLean 2010; Hou, Kim, and Werner 2016; Pat-
ton and Weller 2017). Recent papers in this literature use specialized datasets
to study the implementation shortfall of size, B/M, and momentum (Frazzini,
Israel, and Moskowitz 2015; Briere, Lehalle, Nefedova, and Raboun 2019). Our
paper differs in the size of our anomaly dataset. This huge amount of data allows
us to draw conclusions about post-publication net returns, and thus the profits

that investors should expect in the future.

Several other papers study the deterioration of anomaly performance over
time (Schwert 2003; Marquering, Nisser, and Valla 2006; Huang and Huang
2013; McLean and Pontiff 2016; Jacobs and Miiller 2017; Chen and Zimmermann
2018). Of these papers, ours is most closely related to Chordia, Subrahmanyam,
and Tong (2014) and Chu, Hirshleifer, and Ma (2017), who also demonstrate
that improvements in aggregate liquidity have reduced anomaly returns, and
to Huang and Huang (2013), who show that a long-only strategy that optimally
picks the best performing published anomaly beats the market after accounting
for trading costs. We differ from these papers in that we quantitatively examine
returns net of transaction costs for a large set of anomalies. Thus, we show that
not only have gross returns declined as liquidity has improved, but that trading
costs almost completely eliminate gross returns post-publication for the average

anomaly.

2. Anomalies Data and Trading Cost Estimates

Our anomalies are 120 published anomalies from the Chen and Zimmer-
mann (2018) (CZ) dataset that reliably produce decile sorts. This requirement
omits many event studies and other discrete variables but ensures that our cost-

mitigation techniques can be applied.

Our trading cost measure is the effective bid-ask spread. We measure
spreads using high frequency ISSM and TAQ data when available (1983-2016
for NYSE/AMEX and 1987-2016 for NASDAQ). For the earlier sample, we use
a simple average of four low frequency proxies: Hasbrouck’s (2009) Gibbs esti-
mate (Gibbs); Corwin and Schultz’s (2012) high-low spread (HL); Fong, Holden,



and Tobek’s (2017) implementation of Kyle and Obizhaeva’s (2016) volume-over-
volatility (VoV); and Abdi and Ranaldo’s (2017) close-high-low measure (CHL).
These LF proxies build on daily CRSP data and allow us to estimate spreads back
to 1926. We post data for our low-frequency average spread and returns gross

and net of spreads at http://sites.google.com/site/chenandrewy.

2.1. Anomalies Data

Our anomalies dataset is created from Chen and Zimmermann’s (2018) (CZ’s)
set of 156 cross-sectional return predictors from 115 publications in accounting,
economics, and finance journals. From this set, we remove 34 predictors that
have difficult-to-evaluate trading costs and 2 predictors that are clearly based on

risk to arrive at our baseline set of 120 anomalies.

Chen and Zimmermann show that their replicated predictors perform quite
well. The average in-sample (original publication’s sample) return is 0.72% per
month, with an average t-stat of 4.3. Moreover, their in-sample returns are very
similar to hand collected statistics from the original publications, differing by

only a handful of basis points on average.

We exclude 34 predictors that have difficult-to-evaluate trading costs. Many
of these predictors are created from event studies (such as Ritter’s (1991) study
of long-run IPO performance) that are difficult to compare with predictors that
change on a regular basis. In particular, the optimal rebalancing of event study-
based portfolios is difficult to determine, and rebalancing has a large effect when
examining trading costs. We also exclude predictors that are too discrete to be
used in our trading cost mitigation techniques such as Hong and Kacperczyk’s
(2009) sin stock classification. Continuity is important, because our most reliable
cost mitigation, the buy-hold spread, relies on the continuity of the predictor for

more efficient rebalancing.

The CZ dataset is a collection of return predictors, and as such is not formally
a set of anomalies. Nevertheless, most return predictors in the CZ dataset were
tested against the CAPM. We choose to be open in our interpretation of what
is an anomaly and include everything except for the Fama and MacBeth (1973)
CAPM beta and Kelly and Jiang’s (2014) tail risk factor.

The anomalies are constructed from the usual data sources. More than half

of the predictors focus on Compustat data, and about 30% use purely price data.


http://sites.google.com/site/chenandrewy

Most of the remainder use analyst forecasts, though several focus on institutional
ownership data, trading volume, or specialized data (such as Gompers, Ishii, and
Metrick’s (2003) governance index). Appendix A.1 provides a list of the anoma-

lies. For further details, please see Chen and Zimmermann (2018).

2.2. Trading Cost Estimates

For each portfolio we examine, we construct trading costs by tracking port-
folio weights and applying the effective bid-ask spread whenever trading occurs.
Specifically, each time a position is entered or exited, we assume half of the ef-

fective spread is paid.

This measure of trading costs aims for relevance and simplicity. Indeed, it
leads to a simple interpretation: our costs are the lower bound on the cost to an
average trader who uses market orders. Using the effective spread means that we
capture the cost of completed trades, which can be smaller than those implied
by quoted spreads (Stoll 2003).

Effective spreads omit shorting costs and price impact. We omit these costs
because including them would require taking a strong stand on the trader under
consideration. Similarly, traders who use limit orders instead of market orders
incur execution risk and adverse selection costs, which would require a dramat-

ically more complicated analysis (see Cont and Kukanov 2017, for example).

We now discuss details of our effective spread measurement.

2.2.1. High Frequency Spread Measurement

The HF effective spread for the kth trade of a given stock is
[Effective Spread];. = 2|log(P) —log(M)l, @))]

where Py is the price of the kth trade and Mj is the midpoint of the matched con-
solidated best bid and offer (BBO) quote. To match the monthly data frequen-
cies used in the anomalies literature, we first aggregate to a daily level by taking
a share-weighted average of intra-day spreads, and then aggregate across days
within each month by taking a simple average. Anomaly returns are measured
using end-of-month closing prices and thus one may argue that end-of-month

spreads are a better match. However, averaging across the month ensures that



our spreads are not sensitive to intraday outliers.

We use Daily TAQ (DTAQ) data with its milli-nanosecond time-stamps when-
ever itis available (October 2003 to December 2016). Holden and Jacobsen (2014)
find that DTAQ leads to a more accurate and precise measurement of effective
spreads in the modern market environment relative to the Monthly TAQ (MTAQ)

data with its second-level time stamps.

Combining ISSM, MTAQ, and DTAQ, our HF data provide a mostly contin-
uous history of transactions on the NYSE and AMEX from 1983-2016. Data
for NASDAQ stocks is somewhat shorter (1987-2016), as ISSM is missing NAS-
DAQ data before 1987. The older ISSM data also features several gaps in data.
NASDAQ data is missing in April and May 1987, April and July 1988, Novem-
ber and December 1989. In addition, there are 46 trading days with no data for
NASDAQ stocks between 1987 and 1991, and 146 trading days with no data for
NYSE/AMEX. These data gaps are also found by Barber, Odean, and Zhu (2008).
We discuss how we fill in the gaps in Section 2.2.2.

Construction of the matched BBO quotes and data cleaning follows Holden
and Jacobsen (2014) (HJ) closely.! In addition to the screens used in HJ, we also
delete spreads > 40% at the trade level. DTAQ spreads use HJ’s DTAQ code. MTAQ
spreads for 1999-2003 use HJ's MTAQ code. For pre-1999 data, we add a 2 second
delay to the HJ interpolation-matching algorithm. ISSM spreads use an adapted
version of HJ’'s MTAQ code following the quote screens used in Lou and Shu
(2014). For additional details see Appendix A.2.

2.2.2. Low-Frequency Spread Measurement

When HF data is not available, we use LF proxies based on daily CRSP data.
Rather than focus on a particular LF proxy, we compute four different LF prox-
ies and use the simple average as our spread. This approach is motivated by the
idea that the LF proxies are a forecast (or backcast) of the unobserved high fre-
quency effective spread. The literature on economic forecasting has shown that
a simple average of forecasts (a.k.a. combination forecasts) significantly outper-
forms individual forecasts in a wide variety of settings (Bates and Granger 1969;
Timmermann 2006). This improvement can be understood from a simple diver-
sification argument: the predictive power of a particular forecast varies across

observations, and combining multiple forecasts averages out these errors. The

'We are grateful to Craig Holden for providing SAS code on his website.



averaging of multiple LF illiquidity proxies is also used in Karnaukh, Ranaldo,
and Soderlind (2015), who find that averaging improves on using the constituent

proxies alone.

Three of our four proxies build off of Roll’s (1984) classic microstructure
model. The Roll model assumes that the true value of a stock follows a random
walk, and that the observed trade prices deviate from the true value by the ef-
fective spread. The fourth proxy uses a completely different framework: the Kyle
and Obizhaeva (2016) microstructure invariance hypothesis. All 4 proxies have

been shown to be highly correlated with HF spreads.

The LF proxies we use are as follows:

1. Hasbrouck’s (2009) Gibbs sampler estimate of the Roll model (Gibbs)

Hasbrouck (2009) estimates the Roll model using Bayesian methods (Gibbs
sampler) and daily closing prices. Identification comes from the "bid-ask
bounce"— the phenomenon in which buyer initiated trades tend to occur
at higher prices than seller initiated trades. Bid-ask bounce induces a neg-
ative serial correlation in transaction prices, that is stronger for stocks that
are more expensive to trade. The Bayesian approach ensures that the mea-
sured serial correlation is negative, and thus the estimated spread is well
defined. Our Gibbs proxy is estimated using annual samples, following the

approach recommended in Hasbrouck (2009).

Gibbs forms the basis for transaction costs in several other studies of port-
folio returns, including Brandt, Santa-Clara, and Valkanov (2009); Hand
and Green (2011); Novy-Marx and Velikov (2016); and DeMiguel, Martin-
Utrera, Nogales, and Uppal (2017).

2. Corwin and Schultz’s (2012) High-Low Spread (HL).

Corwin and Schultz (2012) estimate the Roll model from daily high and low
prices (hence, HL) that are available in CRSP. Identification comes from the
fact that the daily high-low ratio reflects both spreads and return volatility,
but these two components decay at different rates. Thus, the comparison
of 1-day and 2-day price ranges provides information about the effective

spread.

HL is used in many studies including Karnaukh, Ranaldo, and Soderlind
(2015); McLean and Pontiff (2016); Koch, Ruenzi, and Starks (2016); and

Chen and Zimmermann (2018).



3. Abdi and Ranaldo’s (2017) Close-High-Low (CHL)

Abdi and Ranaldo’s (2017) CHL proxy estimates the Roll model using daily
closing prices as well as the daily high and low (hence, CHL). Abdi and
Ranaldo’s identification builds off the insight that the average of the daily
high and low prices (the midpoint) contains important information about
the true price. Abdi and Ranaldo (2017) show that CHL outperforms both

Gibbs and HL using a number of empirical tests.

4. Volume-over-Volatility (VoV), based on Kyle and Obizhaeva’s (2016) mi-

crostructure invariance hypothesis.

Our last LF proxy takes a rather different approach. Rather than build off
of Roll (1984), VoV is based on the Kyle and Obizhaeva’s (2016) microstruc-
ture invariance hypothesis. In particular, we use Fong, Holden, and Tobek’s
(2017) (FHT’s) implementation:

2
8.0 [Std Dev of Daily Returns|3

[VoV];: = 2)

[Mean Real Daily Dollar Volume] 3

where [VoV]; ; is the proxy for effective spread for stock i in month ¢, the %
and % exponents are predictions of Kyle and Obizhaeva’s (2016) invariance
hypothesis, and the 8.0 coefficient was chosen by FHT to fit the average
monthly TAQ effective spread in their U.S. sample. Nominal dollar volume

is converted to real dollar volume using the CPI.

The invariance hypothesis is that the distribution of transaction costs is
the same across assets and time periods when expressed in terms of “busi-
ness time,” that is, the speed with which “bets” arrive at the market. This
hypothesis leads to the prediction that the constant term in trading costs
(alternatively, the bid-ask spread) is proportional to the RHS of Equation
(2). Fong, Holden, and Tobek (2017) find that VoV is the best performing
LF proxy among many proxies in terms of correlations and RMSE with re-

spect to TAQ spreads.

We compute a LF average if we have at least one LF proxy with data. Each
proxy can produce missing values, as each proxy requires multiple firm-day ob-
servations within a given firm-month. Firm-day observations may be missing if,

for example, the stock did not trade.
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In 12.24% of observations, all LF and HF spreads are missing data. These
missing observations have little effect on our main results, however, as only
0.27% of post-1993 observations are missing, and 90% of our anomalies are pub-
lished after 1993. Regardless, to fill in missing spreads, we match the firm with
missing data to the nearest firm with data in the same month using market equity
rank and idiosyncratic volatility rank. This data filling procedure follows Novy-
Marx and Velikov (2016). For further details, please see Appendix A.3.

2.2.3. Performance and Summary Statistics of Effective Spread Measures

Table 1 illustrates the performance of our LF average proxy. Panel A begins
by showing that our four LF proxies, while highly correlated, still contain distinct
information. The typical correlation is around 75%, but can be as low as 0.59 (be-
tween HL and VoV). These results suggest that the logic of combination forecasts

applies here: by combining proxies we can average out their errors.

Panels B and C shows that the logic works. These panels compare our LF aver-
age with HF spreads when they are available. Panel B shows that the LF average
has the highest correlation with TAQ spreads at 90%. In comparison, the best
individual LF proxies are Gibbs and VoV, which both have 84% correlations with
TAQ. Panel C shows a similar result with ISSM. The LF average has an even higher
94% correlation with ISSM spreads, compared to 90% for the best individual LF
proxy, CHL.

Figure 1 illustrates how summary statistics for our effective spread measure
have evolved over time. Trading costs rise sharply in the early 1970s as NAS-
DAQ stocks enter the CRSP universe. Costs rise further in the late 1980’s, a phe-
nomenon which is seen in other papers (Corwin and Schultz 2012; Abdi and
Ranaldo 2017). Trading costs plummet in the 2000’s as electronic trading and

decimalization have improved liquidity.

[Figure 1 about here.]

3. How Profitable is the Average Anomaly Publica-

tion After Trading Costs?

Having described our trading cost measure and anomaly data, we are now in

a position to address the main question of the paper. Do anomaly returns survive
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trading costs post-publication?

In particular, this section examines the returns net of trading costs for the
average anomaly. We examine both published strategies and strategies that miti-
gate trading costs following Novy-Marx and Velikov (2016). We will see that post-
publication net returns are negative before cost optimization, and tiny after cost
optimization.

Here, we focus on the average anomaly, as examining unusually strong
anomalies introduces selection bias. Section 4 takes a closer look at the best-

performing anomalies using a variety of selection bias adjustments.

3.1. Returns of Published Strategies Net of Trading Costs

We begin by examining the net returns of published strategies. Specifically,
we examine equal-weighted long-short quintile portfolios. This approach fol-
lows the modal portfolio construction in the anomalies literature (McLean and
Pontiff 2016). While one can find papers that use value-weighting, the vast ma-
jority of papers use equal-weights. Similarly, though the decile sorts are fre-
quently used, many of these papers combine the 9th and 10th deciles in the long
leg of their hedge portfolios, suggesting that the original authors would similarly

advocate the use of quintile sorts.

We rebalance each anomaly portfolio following the original publication’s sug-
gestions when possible. If the original paper uses only regressions or is unclear
about rebalancing, we choose the frequency that matches the frequency of the
signal updates (for example, annual for annual Compustat variables). For a de-

tailed list of rebalancing frequencies see Appendix A.1.

Table 2 summarizes our main findings. The table shows the average return
across 120 anomalies, gross and net of trading costs. Panel A examines the modal

published portfoio construction: equal-weighted long-short quintiles.

Trading costs have a massive effect. While the average gross return is an im-
pressive 66 bps per month (8 percent per year) in-sample, net of trading costs
the average return is a measly 5 bps per month (0.60 percent per year). The post-

publication net return is even worse, at -3 bps per month.
[Table 2 about here.]

To understand why trading costs have such a massive effect, it helps to look at
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a decomposition provided in Table 2. The net return (column e) is approximately
the gross return (column a), minus the product of 2-sided turnover (column c)

and the average spread paid (column d).

The average anomaly turns over 15% of its long portfolio and 15% of its short
portfolio each month. Adding both legs leads to the 31% turnover seen in col-
umn (b). Multiplying this turnover by the average spread paid in-sample of 219
bps (column d) leads to a return reduction of about 61 bps per month, nearly

eliminating the gross return of 66 bps.

The destruction of profits is echoed in the post-publication results of Ta-
ble 2. Liquidity has improved over time, and thus, anomaly trading costs are
lower in the post-publication samples. Accordingly, average spreads paid post-
publication are roughly 50% lower compared to the in-sample periods (column
¢). Gross returns have declined by more than 50%, however (column a). As a
result, net returns are actually negative post-publication, despite the improved
liquidity.

Thus, the average trader would have lost money trading on academic pub-
lications. Moreover, our large set of anomalies means that we can be confident
that these results are not due to sampling error and will likely persist into the fu-
ture. The standard error on the -3 bps post-publication net return is just 5 basis
points. Estimation error coming from spreads is also small, as post-publication
net returns use almost exclusively HF data. 97% of the anomalies we study are
published after 1983 (Figure A.2), when the ISSM data begins.

Table 2 also examines the performance of cost-mitigated portfolios (Panels B
and C). We will return to these results after we explain our cost mitigation (Sec-
tion 3.3). There we will see that cost-mitigation significantly improves net returns

in-sample, but post-publication net returns are tiny.

3.2. Why Are Trading Costs so Large?

The large impact of trading costs may be surprising, particularly in the post-
publication samples. Since decimalization, the quoted spread on many stocks
is just one penny. Dividing $0.01 by the typical share price of $20 leads to a tiny
spread of 5 bps, far from the 111 bps post-publication spread paid in Table 2.

Trading costs are extremely right-skewed, however, and anomaly strategies

require trading stocks from all over the liquidity spectrum. Thus, the typical
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spread paid by an anomaly strategy is more similar to the mean spread, and

much larger than the modal spread one typically sees at a brokerage.

This skewness is seen in Figure 2, which compares distributions of spreads
in 2014. NYSE spreads (dotted line) display a mode at around 5 basis points,
consistent with the tiny spread implied by decimalization. The NYSE contains
many stocks with much larger spreads, however, as seen in the long right tail
of the distribution. Indeed, about 20% of NYSE stocks have effective spreads in

excess of 20 bps.
[Figure 2 about here.]

Anomaly portfolios load up on this right tail. The distribution of spreads paid
by our 120 anomaly strategies in 2014 (solid line) shares the same mode as the
NYSE distribution, but the peak is only half as tall, and the missing mass is shifted
into the right tail. As aresult, the mean spread paid by anomaly strategies in 2014

is 67 bps, more than 4 times the average NYSE spread of 16 bps.

While anomaly strategies tend to trade stocks that are more illiquid than the
NYSE, their trading costs are similar to that of the broad universe of stocks. In-
deed, the anomaly paid spread distribution (solid line) lines up closely with the
distribution for all stocks (dash-dotted line), and is significantly shifted to the left
compared with the distribution for the Russell 2000 (dashed line).

3.3. ASimple and Effective Cost Mitigation

We've seen that the average academic anomaly is wiped out by trading costs.
Academic anomaly strategies, however, are not designed to account for trading

costs. Can cost mitigation rescue the average anomaly?

In this section, we use value-weighting and/or the buy/hold spread to mit-
igate trading costs. Stock weights and buy/hold spread parameters are chosen
to maximize net returns using in-sample data. Here, we describe the optimized

cost mitigation technique. Section 3.4 examines performance post-publication.

Value-weighting mitigates costs by reducing the average effective spread
paid. Intuitively, trading micro-cap stocks is costly, and value-weighting ensures

that these micro-caps make up a tiny portion of the portfolio.

The buy/hold spread (also known as “banding” or an “(s,S)” rule) mitigates

costs by reducing turnover. The buy/hold spread is a trading rule that enters
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positions when a stock’s signal is strong, but only exits the position when the
signal is weak enough to justify incurring a transaction cost. For example, a
20/40 buy/hold spread goes long stocks that enter the top 20th percentile of
the anomaly signal, but only exits the position if the stock drops below the 40th
percentile. This trading rule mimics the optimal portfolio rule in the presence
of transaction costs (Magill and Constantinides 1976; Brandt, Santa-Clara, and
Valkanov 2009, for example) and similar decision rules are often seen in dynamic
models with frictions (Arrow, Harris, and Marschak 1951). Novy-Marx and Ve-
likov (2016) and Novy-Marx and Velikov (Forthcoming) show that the buy/hold
spread outperforms other simple cost mitigation strategies such as limiting trad-

ing to low-cost stocks and reducing rebalancing frequency.

We optimize over stock weighting and buy/hold spreads in 4 steps:

1. We consider either (a) equal-weighted quintiles, or (b) value-weighted
NYSE deciles.

2. Using each selection in step 1, we group anomalies into turnover quartiles

using in-sample data.

3. For each turnover group in step 2, we try different lower bounds for the
buy/hold spread and measure net returns. For each anomaly, we choose
the buy/hold spread lower bound that maximizes the average net return of

its turnover group.

4. Using the optimized buy/hold spreads from step 3, for each anomaly we

choose the stock weighting that maximizes net returns in-sample.

This approach to cost mitigation is somewhat restricted. We only consider
equal-weighted all-stock quintiles and value-weighted NYSE deciles, rather than
try all combinations of weighting and sorting parameters. We also restrict the
buy/hold spread choice to the turnover group level rather than optimize for each
anomaly. This restricted optimization keeps our portfolio constructions trans-

parent and limits overfitting.

Table 3 illustrates steps 1-3 of the optimization. Panel A shows the net returns
of equal-weighted quintile strategies within turnover quantiles, after implement-
ing a variety of buy-hold spreads. The panel shows that buy/hold spreads im-
prove the net returns of high turnover anomalies, but do not help much among

anomalies with low turnover. Anomalies in the 3rd turnover quartile perform
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best on average using a 20/35 buy-hold spread—that is, long positions should
only be exited when they drop below the top 35th percentile of the anomaly sig-
nal. 4th turnover quartile anomalies benefit significantly from a 20/50 buy/hold

spread, but they do not produce positive net returns on average.
[Table 3 about here.]

Panel B shows that buy/hold spreads are reliably effective for value-weighted
NYSE decile strategies. As with equal-weighted quintiles, buy/hold spreads
do not significantly improve the net returns of anomalies with below-median
turnover. Buy/hold spreads produce significantly positive net returns for 3rd
turnover quartile anomalies and even the 4th turnover quartile anomalies, how-
ever. These results are consistent with Novy-Marx and Velikov (2016), who also
find that the trading costs for low turnover anomalies are too small to justify im-

plementing a buy/hold spread.

Bold numbers indicate the best-performing buy/hold spreads for each stock
weighting and turnover quartile combination. In the last step of our cost mitiga-
tion, we choose the stock weighting and breakpoint choice that maximizes the
net return in-sample, given the bold buy/hold spreads in Table 3. This last step

of the optimization is done at the anomaly level, and is not shown in the table.

3.4. Cost Mitigated Net Returns

Figures 3 and 4 show that our cost mitigation is effective in-sample. The fig-
ures show the distribution of in-sample net returns before (Figure 3) and after
(4) cost mitigation. Rather than use bars to indicate the histogram counts, we list
acronyms, with each acronym identifying a different anomaly. Full references for

each acronym are found in Appendix A.1.

Figure 3 shows that net returns before cost mitigation feature a long left tail.
While most anomalies have positive net returns ranging between 0 and 60 bps
per month, many anomalies have very negative net returns of -50 to -300 bps.
Averaging across all anomalies leads to the tiny net return of 6 bps per month in
Table 2.

[Figure 3 about here.]

Anomalies with above-median turnover are shown in bold. These high

turnover anomalies occupy the vast majority of the left tail of net returns. These
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high turnover anomalies include many momentum anomalies like 12-month
momentum (Mom12m) and momentum among junk-rated firms (Mom6Jnk),
but also includes a variety of unrelated anomalies like idiosyncratic volatility
(IdioVol), earnings forecast dispersion (EPSDisp), and detrended trading volume
(VolumeTre). Persistent anomaly signals like B/M (BM) and size (Size) are little

affected by bid-ask spreads and occupy the right tail of this distribution.

Cost-mitigation should be very helpful with this left tail of net returns. As
seen in Table 3, value-weighting combined with a buy/hold spread produces

positive net returns even among anomalies in the highest turnover quartile.

Indeed, Figure 4 shows that our cost-mitigation is quite effective in-sample.
The long left tail of net returns from Figure 3 is gone. As a result, the average

anomaly net return increases to a notable 38 bps per month.

Cost mitigation techniques used on each anomaly are also shown in Figure
4. Anomalies that use value-weighting are shown in italics. Strategies that use
buy/hold spreads larger than 5 percentage points are underlined. We do not un-
derline equal-weighted 20/25 buy/hold spreads as the improvement in net re-

turns is very small (Table 3).
[Figure 4 about here.]

60% of anomalies perform best using value-weighting once trading costs are
accounted for. A large fraction of these anomalies work best with a combination
of value-weighting and a buy/hold spread. Indeed, most of the anomalies with
negative net returns before optimization (bold) become profitable once both of

these techniques are applied.

The anomalies that are rescued by cost-mitigation include the momentum
anomalies (Mom6m, Mom12m, Mom6]Jnk, etc). Indeed, momentum anoma-
lies move from among the worst performers using the academic strategies to
among the best performers once value-weighting and buy/hold spreads are ap-
plied. Other anomalies that have significantly improved by cost mitigation in-
clude idiosyncratic volatility (IdioVol), the distress anomaly (FailurePr), and the

forecasted earnings-price ratio (EPforecas).

Still, there are a few anomalies that cost mitigation cannot resuscitate. Many
of these are related to information diffusion, such as price delay (PriceDela) or
the earnings surprise of matched large firms (EarnSupBig). Intuitively, profiting

on slow information diffusion may require trading neglected and illiquid stocks,
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as well as frequent trading.

The net returns in Figure 4 are largely not available to the public, however.
Many readers may not be able to trade on the anomalies until after they are pub-
lished. Even the academics who developed the original strategies in Figure 4
likely cannot earn the in-sample profits, as the strategies were developed toward

the end of the in-sample period.

Instead, the profits available to investors are largely post-publication net re-
turns, which are examined in Figure 5. The figure examines the net returns of
cost-mitigated anomalies by month since publication. The light line takes the
simple average across all anomalies within each month. The extreme volatility
of the light line is a reminder that anomalies portfolios are not at all sure bets,

even after averaging across 120 anomalies.
[Figure 5 about here.]

The dark line shows the trailing 5-year moving average net return, once again
averaging across 120 anomalies. The 5-year moving average shows a sharp de-
cay in performance that occurs around publication time. Net returns drop from
about 40 bps per month 5 years before publication to around 10 bps per month
within a couple years after publication. Net returns improve slightly between 5
and 10 years after publication, as if traders on average forget about the anomaly,

but they trend downward afterwards, reaching close to zero within 20 years.

Averaging across months first and then averaging across anomalies leads to
a meager net return of 13 bps per month, as seen Panel B of Table 2. This
pooled average focuses on the first 10 years after publication, however, as most
of our anomalies were published relatively recently (Appendix A.4). Averaging
across anomalies within each month after publication and then averaging across

months results in a tiny, statistically insignificant net return of 4 bps per month.

Table 2 provides a more detailed look at how cost-mitigation works in-sample
but largely fails post-publication. Panel B shows that cost-mitigation reduces
both turnover by about 30% and spreads paid by almost 50% in the in-sample
period, while reducing gross-returns by only about 10%. Combining these effects

leads to the 33 bps improvement in-sample.

Post-publication cost-mitigation is similarly effective, with about a 30%
improvement in turnover and a more than 50% improvement in spreads

paid. But gross-returns decline precipitously for cost-mitigated strategies post-
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publication, dropping 66%, compared to 55% for unmitigated strategies.

Using post-publication samples accounts explicitly for information effects,
but does not directly account for the modern era of high liquidity. As the high
liquidity era is likely to remain in the future, traders may be interested in exam-
ining net returns both post-publication and post-2005, when the high liquidity
era began. The bottom row of Panel B examines this subsample.? Controlling
for both information effects and liquidity, the mean cost-mitigated net return is
a tiny 8 bps per month, even smaller than the 13 bps per month seen in the post-

publication sample without excluding pre-2005 data.

Overall, these results are consistent with the idea that arbitrageurs act on aca-
demic publications. Indeed, they appear to concentrate their efforts on cost-

mitigated strategies.

3.5. Cost-Mitigated, Only Value-Weighting

Even the small post-publication net returns implied by our cost-mitigated
portfolios may be unachievable, as they require equal-weighting for 40% of
anomalies (Figure 4). Our trading costs omit price impact and short sale fees,
and these additional costs are likely to be larger in small stocks. Indeed, Cohen,
Diether, and Malloy (2007) finds that short sale fees for stocks with below NYSE-
median market value have short sale fees of 33 bps per month, compared to just

3 bps per month for above-median stocks.

These additional costs are more limited in cost-mitigated value-weighted
portfolios, which we examine in Figure 6. These portfolios apply buy/hold

spreads following Table 3, but use only value-weighting.

Figure 5 shows that post-publication decay is even more pronounced in
value-weighted portfolios. Net returns drop from around 40 bps per month in
the 5 years before publication to 0 within 3 years of publication. Once again,
net returns rise about 5-10 years after publication, but trend down afterwards,

reaching zero at around 13 years post-publications.
[Figure 6 about here.]

Averaging across time and then across anomalies, post-publication net re-

turns are a tiny 7 bps per month (Table 2, Panel C). This pitiful post-publication

2We thank Marie Briere for this suggestion.
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profit comes despite the fact that net returns in-sample are a respectable 30 bps
per month. As in Section 3.4, post-publication profits are tiny because gross
returns drop precipitously. For these cost mitigated portfolios that use only
value-weighting, this decay is 74%, suggesting once again that arbitrageurs are
attracted to variations of academic strategies that have reduced trading costs.
Indeed, post-publication and post-2005 (bottom row of Panel C), the mean net

return is close to one standard error from zero.

These results are robust to the exclusion of the 9 anomalies that have neg-
ative net returns in-sample. Excluding these 9 anomalies increases the average
post-publication net return by only 3 bps per month weighing anomalies equally,
and has little effect on the average weighting months since publication equally.
Section 4.1 takes a more detailed look at predicting post-publication net returns
using in-sample data.

Overall, the average anomaly publication offers economically insignificant
profits net of trading costs for the average trader. Even though cost mitigation
can rescue the average anomaly in-sample, the average post publication net re-
turn is at most 13 bps per month, and is even smaller in value-weighted portfo-
lios. Most of the remaining profits are likely claimed by short sale fees, which are

omitted from our simple estimate of trading costs.

4. How Profitable are the Best Anomaly Publications
after Trading Costs?

Up till now, we have focused on the average anomaly’s post-publication net
return. Averaging across all anomalies keeps the analysis simple, but ignores het-

erogeneity across anomalies.

In this section, we examine whether anomalies are truly heterogeneous in
post-publication net returns. To answer this question, one cannot simply av-
erage the right tail of net returns in the post-publication distribution. Such an
average would be polluted by selection bias, and this bias would be especially

large in the short post-publication samples.

To understand this selection bias, it helps to plot the distribution of post-
publication net returns. Figure 7 plots this distribution, and shows that net re-

turns form a nice bell shape, centered around the average anomaly return of 13
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bps per month.
[Figure 7 about here.]

Figure 7 shows that some anomalies have large net returns post-publication.
Size, B/M, and momentum are among the better performers, consistent with
Frazzini, Israel, and Moskowitz’s (2015) and Briere, Lehalle, Nefedova, and
Raboun’s (2019) finding that size, B/M, and momentum perform well after trad-
ing costs in recent years. Other anomalies have performed well too: asset tan-
gibility (Tangibili), Gross Profitability (ProfGross), and net external financing

(ExtFinNet) all produce net returns in excess of 60 bps per month.

It’s not clear that these large net returns are due to true predictability, how-
ever. We've been using the term “net returns” to refer to sample mean net re-
turns. Sample means include sampling variation, and this variation is not ran-
dom when we focus on the right tail of the distribution. Indeed, the right tail will
tend to include not only anomalies with large true returns, but also anomalies

with unusually positive sampling error.

This selection bias is especially pronounced for anomalies with short post-
publication samples. For example, cash to assets (Cash) and gross profitability
(ProfGross) were published in 2012 and 2013, respectively, and we have only 3-4
years of post-publication returns as our data ends in 2016. Thus, it’s hard to say
whether the large net returns are due to pure chance. As these anomalies are in
the right tail, it is likely that sampling variation has a positive effect on the sample

mean return.

Indeed, Figure 7 resembles what would be generated by the null hypothesis
with no predictability. Only a 12.5% of anomalies have t-stats that exceed 2.0
(bold), compared to 4.6% under the null. Similarly, 73% have t-stats less than
1.5, compared to 87% under the null. In other words, much of the tail of this

distribution can be attributed to noise.

We use two methods to separate true net returns from noise. Section 4.1 ex-
amines whether post-publication net returns can be predicted using in-sample
data. The amount of predictability, then, determines the amount of heterogene-
ity in true net returns. Section 4.2 explicitly separates true returns from noise by

estimating a simple model that accounts for selection bias.

Though the methods are different, they lead to very similar results: allowing

for equal-weighted strategies, one can hope to find at most 15-20 bps per month
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of true net returns post-publication. Value-weighted strategies provide at most

7-15 bps per month.

4.1. Predicting Post-Publication Net Returns with In-Sample

Net Returns

We use in-sample turnover and in-sample net returns to predict post-
publication net returns. Both of these anomaly properties should theoretically
predict net returns. Sections 3.3 and 3.4 showed that turnover has a massive
impact on net returns, and that some anomalies have negative in-sample net re-
turns even after cost mitigation. High turnover anomalies may also have high net
returns, however. For example, momentum anomalies and idiosyncratic volatil-

ity both have high turnover but large net returns once trading costs are mitigated.

Table 4 shows the predictability results. The table shows the mean post-
publication net return of anomalies grouped by predictor quartiles. Panel A uses
cost-mitigated anomaly strategies that include equal weighting, while panel B

uses cost-mitigated strategies that use only value-weighting.
[Table 4 about here]

The table shows that predictability is relatively minor. Turnover is the
stronger predictor. Including equal-weighted strategies (Panel A), the best (low-
est) turnover quartiles net about 20 bps per month post-publication. These net

returns are highly statistically significant, but economically modest.

Moreover, net returns are notably smaller using value-weighting (Panel B).
Restricting the portfolios to value-weighting, the best two turnover quartiles net
15 and 8 bps per month. It may be hard to determine whether an anomaly is
in the best or second best turnover quartile in real time, however. Thus, the net

return that can be actually obtained is likely between 8 and 15 bps per month.

Table 4 shows that in-sample net returns are a fairly poor predictor of post-
publication net returns. The relationship is non-monotonic in strategies that in-
clude equal-weighting and strategies that use value-weighting only. Indeed, pre-
dictability is essentially non-existent using value-weighting, with the best and

worst quartiles differing by just a single basis point per month.

Overall, post-publication returns are not very predictable. Using in-sample

data, one can obtain at most 20 bps per month of net returns post-publication,
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and about 10-15 bps per month if one is restricted to value-weighting. These re-
sults suggest that the right tail in post-publication net returns (Figure 7) is largely
due to noise, and net returns are modest, even among the best anomalies and af-

ter cost mitigation.

4.2. Large Net Returns Adjusted for Selection Bias

Another way to examine whether any anomalies survive is to explicitly adjust
for selection bias in the estimation of mean returns. This section develops an
“empirical Bayesian” adjustment and applies it to anomalies with especially large

post-publication net returns.

4.2.1. An Empirical Bayesian Selection Bias Adjustment

Our bias adjustment is derived from a statistical model of post-publication
netreturns. Predictor i’s post-publication sample mean return 7; is a noisy signal

of its true return y;

i =Hi+e€; 3)
€;~ N(O, SEi), (4)

where €; is noise and SE; is the standard error of 7;. The idea that the noise is un-
correlated is consistent with the near-zero mean and median time-series corre-
lation between pairs of anomaly returns (Green, Hand, and Zhang 2013, McLean
and Pontiff 2016, Chen and Zimmermann 2018). True returns are also normally
distributed

i ~ Ny, 0,0 5)

where p, is the mean of true returns and o, is the standard deviation of true

returns.

This simple model helps illustrate the hazards of focusing on large post-
publication returns. Suppose we want to look at a portfolio i which has a
post-publication sample mean return that is equal to the 90th percentile post-

publication sample mean return 79o,. This selection process implies that 7; is

23



upward biased, as it leads to large ¢;:

E(7;|7; = Footn) = E(1;| 7 = Footm) + E(€;17; = Foom) - (6)
—_——
>0

To control for luck, we want to explicitly condition on selection and keep only

the E(u;|7; > Fgown) term:

fioo = E(1i|7; = Footh) @)

We calculate similar conditional expectations by first estimating y,, and o, and
then applying standard probability theory formulas.?

We estimate p,, and o, using method of moments. p,, is estimated by aver-
aging across all ;.

=7 YT (10)

o can be estimated by comparing the variance across 7; to the average standard

, 0 } (1D

where the max operator ensures non-negativity of 6, and can be justified using

error SE;:

1 1
A2 _ a2 2
G, = max{ N Ei (Fi — ) N Ei SE;

expected loss function arguments (Efron and Morris 1973).

This approach to adjusting for selection bias is often described as “empiri-
cal Bayesian.” We calculate E(u;|7; > r9on) using Bayesian formulas, but then

use frequentist methods to estimate the “priors” u, and o,. Similar methods

3Normal-normal updating formulas give
E(uilFi, SEi, iy, 0 p) = Sijdy + (1 — 8)Fy 8)
where the shrinkage s; is

% ©)
Si = 5 -
0M+SEi

And then the properties of the normal distribution give the 90th percentile.
4To see this, note that

(Fi = 1)® = (i — ) + (Wi — p)ei +€5.

Then taking expectations removes the cross term (u; — p,)€;.
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are often used to control for luck in statistics (Efron 2012). These methods have
recently been applied in economics to large scale A/B testing (Azevedo, Deng,
Montiel Olea, and Weyl 2019; Azevedo et al. 2019) and forecasting revenues of a

large panel of banks (Liu, Moon, and Schorfheide Forthcoming).

4.2.2. Bias Adjusted Post-Publication Net Returns

Table 5 describes the estimation results and bias adjusted returns for the best-
performing anomalies. The top panel illustrates the estimation of the model of

post-publication returns (Equations (3)-(5)).
[Table 5 about here.]

Using cost-mitigated portfolios that allow for equal-weighting (top row), the

cross-predictor variance of returns (var 7;) is very close to the mean squared stan-

2
I

small (Equation (11)). In other words, noise can account for the vast majority

dard error (mean SE?). This implies that the variance of true returns 67, is very
of the dispersion in post-publication returns across predictors. This result holds
regardless of whether one allows equal-weighting (top row) or uses only value-
weighted portfolios. Indeed, using value-weighting implies that there is no dis-

persion at all in true returns.

These results are intuitive. The net returns in Figure 7 are mostly within 35
bps of the center of the distribution. The typical post-publication sample of 13
years and typical monthly volatility of around 400 bps implies a standard error
of about 400/1/13 x 12 = 32 bps. These two measurements of dispersion are very
close to another, allowing little room for variation in true returns. Informally,

Figure 7 has just about as many large t-stats as one would expect by pure chance.

As there is little variation in true returns, the adjusted returns are close to the
mean across anomalies. This is seen in the bottom panel of Table 5, which shows
the top percentiles of adjusted returns fi. The 90th and 95th percentile anomalies
have bias-adjusted net returns of only about 20 bps per month. Limiting strate-
gies to value weighting, the estimation implies no variation in true returns 6, = 0
and thus even the 95th percentile true return is equal to the mean across anoma-
lies. Both of these results are quantitatively consistent with those that come from

predicting post-publication net returns (Table 4).

Taken with Section 4.1, we can be quite confident that there is little true dis-

persion in performance post-publication. Anomaly publications offer little in the
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way of returns net of trading costs for the average trader, especially if one focuses

on value-weighted portfolios.

5. Conclusion

We show that anomalies largely provide the illusion of profits. For the average
trader, publications reveal only profits that were already taken out of the market.
Post-publication, the average anomaly return is negligible net of trading costs.
Even the strongest anomaly’s net returns are modest at best. Moreover, the mod-
est net returns we manage to uncover are fragile, relying on equal-weighting and

decaying toward zero as time passes.
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A. Appendix

A.l1.

This table lists the anomalies in our dataset. For further details, please see the Appendix of Chen and Zimmermann (2018).

Description of the Anomaly Dataset

Freq lists the rebalancing frequencies we assume.

Table A.1: List of Cross-Sectional Return Predictors Part 1/3

Acronym Description Freq Publication

AccrAbn Abnormal Accruals A Xie 2001 AR
AccrOper Percent Operating Accruals A Hafzalla et al 2011 AR
AccrPct Percent Total Accruals A Hafzalla et al 2011 AR
Accruals Accruals A Sloan 1996 AR
AdExpGr Growth in advertising expenses A Lou 2014 RFS
AnnounRet Earnings announcement return Q Chan et al 1996 JF
AssetCGr Change in current operating assets A Richardson et al 2005 JAE
InvestAG Asset Growth A Cooper et al 2008 JF
ATurn Asset Turnover A Soliman 2008 AR
BEgrowth Sustainable Growth A Lockwood Prombutr 2010 JFR
BetaSquared CAPM beta squred M Fama MacBeth 1973 JPE
BidAskSpread  Bid-ask spread M Amihud Mendelsohn 1986 JFE
BM Book to market A Fama French 1992 JF
BMent Enterprise component of BM A Penman et al 2007 JAR
BMlev Leverage component of BM A Penman et al 2007 JAR
CAPXgr Change in capex (two years) A Anderson Garcia-Feijoo 2006 JF
Cash Cash to assets Q Palazzo 2012 JFE
CF2Price Cash flow to market A Lakonishok et al 1994 JF
CFOper2Price  Operating Cash flows to price A Desai et al 2004 AR
DebtFinC Composite debt issuance A Lyandres Sun Zhang 2008 RFS
DeferRev Deferred Revenue A Prakash Sinha 2012 CAR
DepGr Change in depreciation to gross PPE A Holthausen Larcker 1992 JAE
EarnCons Earnings Consistency Q Alwathainani 2009 BAR
EarnSupBig Earnings surprise of big firms M Hou 2007 RFS
EarnSurp Earnings Surprise Q Foster et al 1984 AR
EffFrontier Efficient frontier index A Nguyen Swanson 2009 JFQA
EntMult Enterprise Multiple A Loughran Wellman 2011 JFQA
EP Earnings-to-Price Ratio A Basu 1977 JF
EPforecast Earnings Forecast M Elgers Lo Pfeiffer 2001 AR
EPSDisp EPS Forecast Dispersion M Diether et al 2002 JF
EPSForeLT Long-term EPS forecast M La Porta 1996 JF
EPSrevise Earnings forecast revisions M Chan et al 1996 JF
Eq2AGr Change in equity to assets A Richardson et al 2005 JAE
ExcludExp Excluded Expenses M Doyle et al 2003 RAS
ExtFinNet Net external financing A Bradshaw et al 2006 JAE
FailurePr Failure probability Q Campbell et al 2008 JF
FinLiabGr Change in financial liabilities A Richardson et al 2005 JAE
GIndex Governance Index A Gompers et al 2003 QJE
GM2SaleGr Gross Margin growth over sales growth A Abarbanell Bushee 1998 AR
Herf Industry concentration (Herfindahl) A Hou Robinson 2006 JF
High52 52 week high M George Hwang 2004 JF
IdioVol Idiosyncratic risk M Ang et al 2006 JF
Mliquid Amihud’s illiquidity M Amihud 2002 JFM
IndMom Industry Momentum M Grinblatt Moskowitz 1999 JFE
IndRetBig Industry return of big firms M Hou 2007 RFS




Table A.2: List of Cross-Sectional Return Predictors Part 2/3

Acronym Description Freq Publication
InstOwnSI Inst own among high short interest Q Asquith Pathak Ritter 2005 JFE
IntanBM Intangible return using BM A Daniel Titman 2006 JF
IntanCFP Intangible return using CFtoP A Daniel Titman 2006 JF
IntanEP Intangible return using EP A Daniel Titman 2006 JF
IntanSP Intangible return using Sale2P A Daniel Titman 2006 JF
InvestGr Change in capital inv (ind adj) A Abarbanell Bushee 1998 AR
Invntory Inventory Growth A Thomas Zhang 2002 RAS
InvIoRev Investment to revenue A Titman et al 2004 JFQA
Kz Kaplan Zingales index A Lamont et al 2001 RES
LaborGr Employment growth A Bazdresch Belo Lin 2014 JPE
Leverage Market leverage A Bhandari 1988 JFE
LiabCGr Change in current operating liabilities A Richardson et al 2005 JAE
LTAssetGr Change in Noncurrent Operating Assets A Soliman 2008 AR
LTNOAgr Growth in Long term net operating assets A Fairfield et al 2003 AR
MaxRet Maximum return over month M Bali et al 2010JF
Moml12m Momentum (12 month) M Jegadeesh Titman 1993 JF
Mom12to7 Intermediate Momentum M Novy-Marx 2012 JFE
Mom1813 Momentum-Reversal M De Bondt Thaler 1985 JF
Momlm Short term reversal M Jegedeesh 1989 JF
Mom36m Long-run reversal A De Bondt Thaler 1985 JF
Mom6]Jnk Junk Stock Momentum M Avramov et al 2007 JF
Mom6m Momentum (6 month) M Jegadeesh Titman 1993 JF
MomVol Momentum and Volume M Lee Swaminathan 2000 JF
MomYoung Firm Age - Momentum M Zhang 2004 JF
NDebtFin Net debt financing A Bradshaw et al 2006 JAE
NDebtPrice Net debt to price A Penman et al 2007 JAR
NEqFin Net equity financing A Bradshaw et al 2006 JAE
NOA Net Operating Assets A Hirshleifer et al 2004 JAE
NPayYield Net Payout Yield A Boudoukh et al 2007 JF
NWCgr Change in Net Working Capital A Soliman 2008 AR
OperLeverage Operating Leverage A Novy-Marx 2010 ROF
OptVol Option Volume to Stock Volume M Johnson So 2012 JFE
OptVolGr Option Volume relative to recent average M Johnson So 2012 JFE
OrderBacklog Order backlog A Rajgopal et al 2003 RAS
OrgCap Organizational Capital A Eisfeldt Papanikolaou 2013 JF
OScore O Score A Dichev 1998 JFE
PayYield Payout Yield A Boudoukh et al 2007 JF
PensionFunding  Pension Funding Status A Franzoni Marin 2006 JF
PMGrowth Change in Profit Margin A Soliman 2008 AR
Price Price M Blume Husic 1972 JF
PriceDelay Price delay M Hou Moskowitz 2005 RES
ProfCash Cash-based operating profitability A Ball et al 2016 JFE
ProfGross gross profits / total assets A Novy-Marx 2013 JFE
ProfitMargin Profit Margin A Soliman 2008 AR
ProfOper operating profits / book equity A Fama French 2006 JFE




Table A.3: List of Cross-Sectional Return Predictors Part 3/3

Acronym Description Freq Publication
RDirtSurp Real dirty surplus A Landsman et al 2011 AR
RealEstate Real estate holdings A Tuzel 2010 RES
RetConglomerate = Conglomerate return M Cohen Lou 2012 JFE
Rev2Price Sales-to-price A Barbee et al 1996 FAJ
RevG2InvG Sales growth over inventory growth A Abarbanell Bushee 1998 AR
RevG20HG Sales growth over overhead growth A Abarbanell Bushee 1998 AR
RevGrowth Revenue Growth Rank A Lakonishok et al 1994 JF
RevSurprise Revenue Surprise Q Jegadeesh Livnat 2006 JFE
RoA earnings / assets Q Balakrishnan et al 2010 JAE
RoE net income / book equity A Haugen Baker 1996 JFE
Seasonality Return Seasonality M Heston Sadka 2008 JFE
Sharelsl Share issuance (5 year) A Daniel Titman 2006 JF
Sharels5 Share issuance (1 year) A Pontiff Woodgate 2008 JF
VolumeShare Share Volume Q Datar Naik Radcliffe =~ 1998 JFM
ShortInterest Short Interest Q Dechow et al 2001 JFE
Size Size A Banz 1981 JFE
OSmirkNTM Volatility smirk near the money M Xing Zhang Zhao 2010 JFQA
OSmirkCP Put volatility minus call volatility M Yan 2011 JFE
Tangibility Tangibility A Hahn Lee 2009 JF
Tax2E Taxable income to income A Lev Nissim 2004 AR
TaxGr Change in Taxes Q Thomas Zhang 2011 JAR
ATurnGr Change in Asset Turnover A Soliman 2008 AR
TurnovVol Share turnover volatility M Chordia et al 2001 JFE
CF2Pvar Cash-flow to price variance A Haugen Baker 1996 JFE
Volume2Mkt Volume to market equity M Haugen Baker 1996 JFE
VolumeDol Past trading volume M Brennan et al 1998 JFE
VolumeSD Volume Variance M Chordia et al 2001 JFE
VolumeTrend Volume Trend M Haugen Baker 1996 JFE
ZeroTrade Days with zero trades M Liu 2006 JFE
ZScore Altman Z-Score A Dichev 1998 JFE




A.2. Details of High Frequency Data

We use Holden and Jacobsen’s (2014) (HJ’s) code to calculate effective
spreads. DTAQ spreads use HJ’s DTAQ code. ISSM and MTAQ spreads use
HJ’s monthly code. For pre-1999 data, we add a 2 second delay to the H]J
interpolation-matching algorithm. For data in 1999-2002 we use the 1 millisec-
ond delay following HJ’s MTAQ code.

In addition to the data screens used by HJ, we also discard any spreads > 40%
at the trade level (before averaging), following Abdi and Ranaldo (2017). We also
adapt the mode screens to ISSM data following Lou and Shu (2014).

The details of the data cleaning are described below.

A.2.1. ISSM Data Details

We adapt HJ’s MTAQ code to calculate ISSM spreads.

One of HJ’s screens deletes quotes in which the offer or bid size are < 0 or
missing. These depth fields are missing or appear to have errors in some sub-
samples of the data, and we choose not to apply this screen on these subsamples.
NASDAQ stocks in ISSM from 1987-1989 are all missing depth data. Roughly half
of the stocks in MTAQ from January 1, 1993 to April 5, 1993 (inclusive) are have
zero for all observations of depth, while close to 0% of stocks are have zeros be-
ginning April 6. HJ use the depth screen in order to avoid withdrawn quotes.
We choose to not use the depth screen on these subsamples, as the noise in
LF spreads is likely to be much larger than the errors introduced by withdrawn

quotes.

Quotes are excluded if any of the following hold:

e Time is before 9:00 am or after 4:00 pm
e ifmodein (C,D,EG,[LL,N,BS,V, X, 7)
e BID>OFR and BID>0 and OFR>0

e BID>0 and OFR=0

e OFR-BID>5 and BID>0 and OFR>0

* OFR = 0 or missing

e BID =< 0 or missing

* ofrsize < 0 or missing

* bidsize < 0 or missing.
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NASDAQ listed stocks from 1987-1989 and NYSE listed stocks in 1986 are not

subject to the size filters as they are all missing ofrsize and bidsize.

Trades are kept if all of the following hold

Time is after 9:30 am and before 4:00 pm
Price > 0
Type=T
Cond notin (C,L, N, R, O, Z) and Size > 0

From TAQ and correction field is zero

We add a 2-second interpolated delay using Holden and Jacobsen’s (2014)

interpolation code.

A.2.2.

MTAQ Data Details

We follow HJ’s MTAQ code to calculate MTAQ spreads. MTAQ data spans Jan
1, 1993 to Dec 31, 2014 with trades and quotes timestamped to the second.

Quotes are excluded if any of the following hold:

Time is before 9:00 am or after 4:00 pm
if mode in (4,7,9,11,13,14,15,19,20,27,28)
BID>OFR and BID>0 and OFR>0

BID>0 and OFR=0

OFR-BID>5 and BID>0 and OFR>0

OFR =< 0 or missing

BID =< 0 or missing

ofrsiz < 0 or missing

bidsiz < 0 or missing.

Data from January 1, 1993 to April 5, 1993 are not subject to the size filters be-

cause about 50% of stocks have zero for all observations of ofrsize and bidsize

during this period. In contrast, close to 0% have zeros beginning April 6, 1993,

suggesting there are errors for bid and offer sizes at the beginning of the MTAQ

data.

Trades are kept if all of the following hold

Time is after 9:30 am and before 4:00 pm
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¢ Price>0
e Type=T
e Corr=0

Following Holden and Jacobsen (2014), we delay quotes as follows:

* Add 2 second interpolated delay pre-1999

* Add 1 millisecond interpolated delay based on HJ for 1999-2002

A.2.3. DTAQ data details

We exactly follow HJ’s DTAQ code to calculate DTAQ spreads. DTAQ spans
Sep 10, 2003 to the present with trades, quotes, and NBBOs originally times-
tamped to the millisecond. On Aug 25, 2015 the Daily TAQ timestamps were
switched to the microsecond and on Oct 24, 2016 the Daily TAQ timestamps
were switched to the nanosecond. Our DTAQ code uses nanosecond timestamps
throughout even though some of the trailing digits will be zeros during the mil-

lisecond and microsecond eras.

Observations in the DATQ NBBO and quote file are excluded if any of the
following hold:

Qu_Cond notin (A, B, H, O, R, W)

Ask < 0 or missing

Ask size < 0 or missing

Bid < 0 or missing

Bid size < 0 or missing

Observations in the DTAQ NBBO are also excluded if Qu_Cancel = B. Observa-
tions in the quote file are also excluded if Bid > Ask or Bid - Ask > 5.

We also keep only quotes that meet the following additional restrictions:

* (Qu_Source = C and NatBBO_Ind=1) or (Qu_Source = N and
NatBBO_Ind=4)

e sym_suffix="

e Time is between 9:00 am and 4:00 pm

Trades are kept if the all of the following hold:
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Tr Corr =00

e price >0

sym_suffix ="

Time is between 9:30 am and 4:00 pm
Following Holden and Jacobsen (2014), we delay quotes as follows:

* Add 1 nanosecond (one-billionth of a second) delay post Oct 24, 2016
* Add 1 microsecond (one-millionth of a second) delay post Jul 24, 2015

* Add 1 millisecond (one-thousand of a second) delay post Sep 9, 2003

Explicitly, the Holden and Jacobsen (2014) DTAQ code adds a nanosecond de-
lay, but due to the data variable data availability in DTAQ the delays are as listed
above.

A.3. Details of Low Frequency Measures

HL and CHL both use daily high and low prices. For days in which stocks do
not trade, we use the most recent observation of high and low prices. As noted in
Abdi and Ranaldo (2017) and Corwin and Schultz (2012), on days in which stocks
do not trade CRSP provides closing quoted spreads, and closing quoted spreads
are very highly correlated with effective HF spreads in the recent sample. In these
cases, we do not use the closing quoted spread in order to make interpretation of

our LF proxy average simple.

The LF proxies require multiple firm-day observations to compute a spread
for a given firm-month. We follow the original papers and do not compute the
proxy if the data is insufficient. Specifically, HL requires 12 daily observations,
CHL requires 12 eligible days following the definition in Abdi and Ranaldo (2017),
VoV requires 5 positive volume and 11 non-zero return observations, and Gibbs

requires the sampler to converge.

If ISSM, TAQ, and the LF spreads are all missing, we match the firm to the
nearest firm with available data in terms of Euclidean distance of market equity
rank and idiosyncratic volatility rank. If idiosyncratic volatility is missing, we use

just the market equity rank.
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Figure A.1: Low-Frequency Spread Proxy Errors Over Time. We subtract low-
frequency (LF) effective spread proxies from TAQ effective spreads at the firm-
month level to calculate an error. We then compute the median error across firms
within each month. Definitions of the LF proxies are found in Section 2.2.2. Post-
decimalization, LF proxies are upward biased by roughly 25-50 bps.

or q2
—— Gibbs
- = HL
15F CHL 415
—=== VoV

Median (LF Spread - TAQ Spread), (% Point)

05 H05
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A.4. Additional Results
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# Anomalies

Figure A.2: Distribution of Publication Years.
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# of Anomalies with Returns

Figure A.3: Distribution of Post-Publication Sample Lengths.
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Table A.4: Returns Gross and Net of Trading Costs: Post-Pub and Post-2005

This table shows the same calculations as Table 2 but uses post-2005 data only.

(@) (b) (©) (d=(b)x(c) (e)=()-(d)
Gross Turnover  Ave Spread Return Net
Return  (2-sided) Paid Reduction Return

Panel A: Equal-Weighted Long-Short Quintiles

Post-Pub & Post-2005 0.30 0.30 1.11 0.32 -0.03
(0.10) (0.10) (0.10) (0.10) (0.10)

Panel B: Cost-Mitigated using Value-Weighting and Buy/Hold Spreads

Post-Pub & Post-2005 0.20 0.20 0.60 0.08 0.13
(0.10) (0.10) (0.10) (0.10) (0.10)

Panel C: Cost-Mitigated using Buy/Hold Spreads, Value-Weighted only

Post-Pub & Post-2005 0.12 0.19 0.31 0.05 0.07
(0.10) (0.10) (0.10) (0.10) (0.10)
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Tables and Figures

Table 1: Correlations Between Effective Spread Measures

Correlations are pooled. We examine four low frequency measures that use daily CRSP
data: Gibbs is Hasbrouck’s (2009) Gibbs estimate of the Roll model, HL is Corwin and
Schultz’s (2012) high-low spread, CHL is Abdi and Ranaldo’s (2017) close-high-low, and
VoV (volume-over-volatility) is Fong, Holden, and Tobek’s (2017) implementation of
Kyle and Obizhaeva (2016) microstructure invariance hypothesis. LF_ave is the equal
weighted average of the four low frequency measures. TAQ and ISSM are computed
from high-frequency data. The low frequency measures are imperfectly correlated, sug-
gesting that they contain distinct information. LF_ave has the highest correlation with
high-frequency spreads.

Panel A: LF spread correlations (1926-2017; 2,114,436 obs.)

Gibbs HL CHL VoV

Gibbs 1.00

HL 0.68 1.00

CHL 0.76 0.88 1.00

VoV 0.75 0.59 0.74 1.00

Panel B: Correlations with TAQ (1993-2014; 1,183,068 obs.)

TAQ Gibbs HL CHL VoV LF Ave

TAQ 1.00
Gibbs 0.84 1.00

HL 0.71 0.67  1.00

CHL 0.80 074  0.88  1.00
VoV 0.84 073 060 075 1.00

LF_Ave 0.90 0.90 0.86 0.93 0.87 1.00

Panel C: Correlations with ISSM (1983-1992; 262,381 obs.)

ISSM Gibbs HL CHL VoV  LF_ Ave

ISSM 1.00

Gibbs 0.88 1.00

HL 0.84 0.79 1.00

CHL 0.90 0.84 0.92 1.00

VoV 0.86 0.82 0.66 0.78 1.00

LF_Ave 0.94 0.95 0.90 0.95 0.88 1.00
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Table 2: Returns Gross and Net of Trading Costs

We adjust 120 anomaly portfolio returns for effective bid-ask spreads. Figures average
across months and then across anomalies, with standard errors in parentheses. Anoma-
lies come from the Chen and Zimmermann (2018) dataset (Table A.1-A.3). Spreads
combine data from ISSM, TAQ, and four low-frequency proxies (Section 2.2.1-2.2.2).
Columns (a)-(d) report an approximate net return decomposition. Panel A uses the
equal-weighted long-short quintiles (the modal published portfolio construction, Sec-
tion 3.1). Panel B examines cost-mitigation which optimizes over equal- vs value-
weighting and the buy-hold spread lower bound (Section 3.4). Panel C examines cost-
mitigation using buy-hold spreads and permitting only value-weighting (Section 3.5).
All figures are in percent per month except for turnover, which is a ratio per month.

(@) (b) (©) (d=(b)x(c) (e)=()-(d)
Gross Turnover  Ave Spread Return Net
Return  (2-sided) Paid Reduction Return

Panel A: Equal-Weighted Long-Short Quintiles

In-Sample 0.66 0.31 2.19 0.61 0.05
(0.04) (0.04) (0.06) (0.07) (0.06)
Post-Publication 0.30 0.30 1.11 0.32 -0.03
(0.04) (0.04) (0.06) (0.05) (0.05)

Panel B: Cost-Mitigated

In-Sample 0.59 0.20 1.36 0.21 0.38
(0.04) (0.02) (0.07) (0.02) (0.03)
Post-Publication 0.20 0.20 0.60 0.08 0.13
(0.04) (0.02) (0.06) (0.01) (0.04)
Post-Pub & Post-2005 0.14 0.20 0.46 0.06 0.08
(0.04) (0.02) (0.04) (0.01) (0.04)

Panel C: Cost-Mitigated, Value-Weighted only

In-Sample 0.46 0.20 0.86 0.16 0.30
(0.04) (0.02) (0.05) (0.02) (0.03)
Post-Publication 0.12 0.19 0.31 0.05 0.07
(0.03) (0.02) (0.05) (0.01) (0.03)
Post-Pub & Post-2005 0.07 0.19 0.21 0.03 0.04
(0.03) (0.02) (0.03) (0.00) (0.03)
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Table 3: Optimizing Buy-Hold Spreads: Mean Net Returns In-Sample by
Turnover Quartile

The table shows mean net returns in-sample for various buy/hold spread trading rules
within turnover quartiles. Bold numbers indicate the best-performing buy/hold spread
for each turnover quartile. Turnover quartiles are calculated using the EW quintile
benchmark (panel A) and the VW NYSE deciles (panel B). For buy/hold spreads in panel
A, we enter a long position for stocks that enter the top 20th percentile of the anomaly
signal, but only exit the long position when the stock drops below the percentile indi-
cated by the buy/hold lower bound in the table. Similarly, we enter short positions when
stocks enter the bottom 20th percentile, but only exit when stocks rise above the indi-
cated buy/hold lower bound. Panel B enters long positions when stocks enter the 10th
NYSE percentile and exits when the stock drops below the NYSE percentile indicated by
the buy/hold lower bound.

Panel A: EW Quintiles

Buy/Hold Lower Bound
20 25 30 35 40 45 50

Q1 039 039 038 037 036 034 0.33
Turnover Q2 031 032 031 031 030 0.29 0.28
Quartile Q3 0.12 0.16 0.17 0.18 0.17 0.17 0.17
Q4 -0.65 -0.51 -0.41 -0.34 -0.29 -0.24 -0.21

Panel B: VW NYSE Deciles

Buy/Hold Lower Bound
10 20 30 40 50

Q1 033 028 026 024 0.23
Turnover Q2 0.34 032 030 0.26 0.22
Quartile Q3 0.16 0.23 0.22 0.19 0.19
Q4 0.07 0.23 0.28 031 0.32
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Table 4: Predicting Post-Publication Net Returns with In-Sample Data

The table shows the average post-publication net returns (% per month) of anomalies
within quartiles of in-sample turnover and in-sample net return. Quartiles are num-
bered from worst expected net return a priori—that is, quartile 1has the highest turnover
and lowest expected net return, and quartile 4 has the lowest turnover and highest ex-
pected net return. All portfolios use cost-mitigation following Table 3. Panel A includes
equal-weighted portfolios if they perform better in-sample. Panel B is restricted to value-
weighting. The best anomalies return only about 10-20 bps net of trading costs.

Panel A: Including Equal-Weighting

In-Sample Predictor Quartile

Predictor 1 (Worst) 2 3 4 (Best)

Turnover -0.18 -0.01 0.18 0.21
(0.06) (0.05) (0.05) (0.05)

Net Return 0.00 0.10 0.06 0.13

(0.04) (0.05) (0.06) (0.05)

Panel B: Value-Weighted Only

In-Sample Predictor Quartile

Predictor 1 (Worst) 2 3 4 (Best)

Turnover 0.06 0.00 0.08 0.15
(0.08) (0.08) (0.07) (0.07)

Net Return 0.10 0.10 0.04 0.11

(0.07) (0.08)  (0.07) (0.08)
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Table 5: Large Net Returns Post Publication Adjusted for Selection Bias

We use empirical Bayesian methods to adjust large post-publication sample mean net
returns for luck. 7; is the post-publication sample mean net return of predictor i. SE;
is the standard error of 7;. &i is the variance of unobserved true returns. f1 is the selec-
tion bias adjusted return using Equation (7). All portfolios use cost-mitigation following
Table 3. “Including EW” includes equal-weighted portfolios if it improves net returns
in-sample. “VW only” is restricted to value-weighting.

Parameter Estimation

mean 7; var7; meano; 4

Including EW  0.127  0.132 0.120 0.013
VW only 0.069 0.139 0.160 0.000

Bias-Adjusted Net Returns Post Publication

{1 (%, monthly)
50pct 75pct 90pct 95 pct

Including EW  0.13 0.16 0.19 0.21
VW only 0.07 0.07 0.07 0.07
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Figure 1: Summary Statistics for Effective Spreads Over Time. Spreads use
high-frequency data from Daily TAQ (DTAQ), Monthly TAQ (MTAQ), and ISSM
when available. When high-frequency data is not available, we use the aver-
age of four low frequency (LF) proxies: Gibbs (Hasbrouck 2009), HL (Corwin and
Schultz 2012), CHL (Abdi and Ranaldo 2017), and VoV (Kyle and Obizhaeva 2016).
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Figure 2: Distribution of Effective Spreads in 2014. This figure compares the
distribution of effective spreads that are paid by anomaly portfolios with those
across all stocks, NYSE stocks, and Russell 2000 stocks. “Paid by anomaly port-
folios” spreads are pooled across all trades implied by 120 anomaly portfolios
in 2014. The stock distributions are pooled across all stock-months in 2014.
Anomaly portfolios trade stocks across the entire liquidity spectrum, including
the long right tail.
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Figure 3: Distribution of Net Returns: In-Sample, Before Cost-Mitigation We adjust anomaly returns for effective bid-ask spreads
(Figure 1). All portfolios use equal-weighted quintile sorts, following the modal approach in the literature. Anomalies with above
median turnover (15% per month, two-sided) are shown in bold. Hash marks indicate larger bins. Published anomaly strategies
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have a long left tail in net returns, and produce an average net return of only 5 bps per month.
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Figure 4: Cost-Mitigation Results: Distribution of Net Returns: In-Sample. We mitigate transaction costs by applying value-
weighting and/or buy/hold spreads to 120 anomaly portfolios. Buy/hold spreads are chosen to maximize net returns in-sample
following Table 3. Stock weighting is chosen to maximize the in-sample net return given the optimized buy/hold spread. Italicized
anomalies benefit from value-weighting. Underlined anomalies benefit from buy/hold spreads. Bold indicates anomalies with neg-
ative net returns before cost mitigation. Hash marks indicate larger bins. Cost mitigation leads to positive net returns for the vast
majority of anomalies, and raise the average net return to 38 bps per month.
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Figure 5: Performance Decay of Cost-Mitigated Anomaly Portfolios. This fig-
ure plots the net return by month since publication for portfolios that use cost-
mitigation following Table 3. For a given month relative to publication, light lines
plot the mean return across all anomalies. Dark lines show the trailing 5-year
moving average of mean returns, and dashed lines show 2 standard error confi-
dence bounds. Positive net returns in-sample become small soon after publica-

tion, and trend toward zero afterwards.
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Figure 6: Performance Decay of Cost-Mitigated Anomaly Portfolios: Value-
Weighted Only. This figure plots the net return by month since publication for
portfolios that use cost-mitigation following Table 3 using only value-weighting.
For a given month relative to publication, light lines plot the mean return across
all anomalies. Dark lines show the trailing 5-year moving average of mean
returns, and dashed lines show 2 standard error confidence bounds. Post-
publication performance is even worse than if one allows for equal-weighting
(Figure 5).
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Figure 7: Cost-Mitigation Results: Distribution of Net Returns: Post-Publication. We mitigate transaction costs by optimally
applying value-weighting and/or buy/hold spreads to 120 anomaly portfolios using in-sample data (Table 3 and Figure 4). We then
measure the net returns to these mitigated strategies post-publication. Italics indicates anomalies with post-publication net return
t-stats < 1.5. Bold indicates t-stats > 2.0. Only a handful of anomalies have t-stats > 2.0, suggesting that many of the large net returns
are due to pure chance.
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