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Executive Stock Options and Bank Risk-Taking

Abstract

Section 956 of the Dodd-Frank Act aims to reduce risk-taking by regulating the structure of
bank executives’ compensation. The efficacy of these regulations presumes that bank executives’
compensation contracts cause them to undertake risky activities, despite the fact that prior
research documents mixed evidence about the nature of this relation. We examine whether bank
executives’ equity incentives cause them to take risk at their banks and, if so, which specific types
of risk and risky activities. We use a novel identification approach to distinguish between any
causal effect of bank executives’ contracts and any endogenous matching of executives and banks
that could also produce an empirical relation. We find that bank executives’ equity portfolio
V ega has a causal effect on their bank’s future systemic risk during economic downturns, but not
during economic expansions. We also find that V ega leads to greater commercial and industrial
lending and investments in non-agency mortgage-backed securities. Collectively, our results
suggest that bank executives’ contracts cause them to take systemic risk, which manifests with
a delay during economic downturns, and that riskier lending and investments are two activities
that are responsible for this effect.



1 Introduction

Understanding the drivers of risk-taking at banks is critical given that their role as financial in-

termediaries and important credit providers can cause the results of their risk-taking to spill over

into–and have an out-sized effect on–the broader (or “real”) economy. A number of influential

studies emphasize banks’ important role in mitigating credit market frictions and show how they

can amplify business cycles and influence aggregate economic activity (e.g., Bernanke and Gertler,

1995; Bernanke et al., 1999). Ivashina and Scharfstein (2010) estimate the economic significance of

lending contractions during the most recent financial crisis by documenting a decline in total bank

loans issued from approximately $700 billion in June 2007 to $281 billion in June 2008. Given these

far-reaching consequences, the extent to which bank executives’ compensation contracts encourage

risk-taking has become focal in recent academic and policy debate. In response to these concerns,

Congress passed the Dodd-Frank Wall Street Reform and Consumer Protection Act (Dodd-Frank)

in 2010. One of the centerpieces of this legislation is Section 956, which requires banking author-

ities to draft regulations to restrict executive compensation practices that encourage risk-taking.

Although this mandate is intended to curb risk-taking that regulators deem inappropriate and

excessive, it presumes that banks’ risk is caused by–rather than simply associated with–their ex-

ecutives’ compensation contracts. Moreover, since banks are exposed to numerous different risks

and engage in a variety of risky activities, the mandate also assumes that regulators can accurately

identify the specific activities and risks influenced by bank executives’ contractual incentives.

However, if anything, the evidence is mixed regarding the extent to which bank executives’

compensation contracts cause risk-taking. Although some studies document evidence consistent

with a causal relation (Chen et al., 2006; DeYoung et al., 2013; Larcker et al., 2017), others fail

to find such a link (Houston and James, 1995; Fahlenbrach and Stulz, 2011; Chesney et al., 2012;

Boyallian and Ruiz-Verdú, 2017). The conflicting evidence may be symptomatic of the endogenous

nature of executive compensation contracts and highlights the possibility that the new proposed

regulations may not produce their desired effect. Although studies of non-financial firms provide

evidence that is somewhat more consistent with a causal effect of executives’ contractual incentives

on risk-taking (Coles et al., 2006; Low, 2009; Armstrong and Vashishtha, 2012), most of these studies

deliberately exclude banks and other financial institutions because of the numerous institutional
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features (e.g., regulatory oversight, large differences in capital structure, different types of agency

conflicts, and potential externalities) (John and Qian, 2003) that make them sufficiently distinct

from their non-financial counterparts. Therefore, these studies provide little insight into the specific

types of risks and and risky activities that bank executives’ compensation contracts encourage

them to take. More importantly, evidence about the relation between the structure of executive

compensation and systemic risk–which is an, if not the most, important and pressing concern of

bank regulators–is virtually non-existent from studies of non-financial firms.

In light of these important gaps at the intersection of the incentive-compensation, banking, and

risk-taking literatures, we study the following two related research questions. First, we examine

whether bank executives’ incentive-compensation contracts cause them to take risk, as implicitly

presumed by the Section 956 mandate. Second, we examine the specific types of risk–including sys-

temic–and specific risky activities that bank executives’ compensation contracts encourage them

to take. We follow the prior empirical risk-taking literature and focus on bank executives’ equity

portfolio (i.e., stock and option) holdings, which accounts for the vast majority of their monetary

wealth and incentives (Core and Guay, 1999; Core et al., 2003; DeYoung et al., 2013). In par-

ticular, we examine Vega, which captures changes in the value of executives’ equity portfolios to

changes in their banks’ stock return volatility, since it provides executives with an unambiguous

incentive to increase risk (Lambert et al., 1991; Ross, 2004).1 The clear theoretical prediction for

Vega facilitates our examination of the specific types of risks and risky activities caused by bank

executives’ compensation contracts, since risks that are within executives control should exhibit a

positive relation with Vega. This prediction may interact with important institutional features that

are unique to the banking sector, including deposit insurance, which provides a “put-like” payoff

that can further encourage risk-taking (Ross, 2004), a high degree of leverage, which amplifies the

sensitivity of executives equity holdings to stock returns and volatility (Guay, 1999), and regulatory

oversight (Saunders et al., 1990; Buser et al., 1981), which may restrict risk-taking.2 This provides

yet another reason why it is difficult to extrapolate empirical findings from non-financial firms to

1 Delta, the change in the value of the executive’s equity portfolio to changes in their bank’s stock price has a theo-
retically ambiguous effect on risk-taking. As such, we focus on Vega given the unambiguous theoretical prediction
and our interest in documenting a causal effect, if any, of contractual incentives on risk-taking. However, we control
for Delta in our analyses.

2 For example, Laffont (1998, p. 249) argues that “a government safety net in the form of deposit insurance or less
formal government protection weakens the incentives to monitor banks and exacerbates excessive risk-taking by
bank managers.”
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banks and the importance of studying risk-taking specifically at banks.

Answering our first research question relies on our ability to credibly distinguish between two

distinct economic forces. On one hand, since bank executives’ compensation depends on the out-

come of risky activities that are presumably at least partially under their control, their compen-

sation contracts can cause them to take risk. More precisely, we define the causal effect as the

change in risk-taking induced from varying features of the contract (e.g., Vega) while holding all

other factors (e.g., executives’ risk-tolerance) fixed. On the other hand, banks are complex and

risky and managing them requires a certain set of skills and attributes that are thought to be in

short supply (Hubbard and Palia, 1995; Dewatripont et al., 2010). In order to attract or match

with the right “type” of executives–namely those who have the desired attributes–banks might

offer different compensation contracts. For example, banks that are either inherently more risky or

that seek to pursue riskier activities may offer relatively “high-powered” (e.g., more option-based)

compensation contracts as a way to attract executives who are more tolerant of risk. Cheng et al.

(2015) present evidence that is consistent with this scenario. In particular, they find a positive

relation between bank managers’ total compensation and their banks’ risk, which they interpret as

evidence that bank managers both demand and receive greater compensation for working at riskier

banks. However, in this case, although executives’ contractual incentives are correlated with their

bank’s risk, it does not reflect a causal relation. Rather, it is an artifact of unobservable differences

in executives’ risk-tolerance that is correlated with both their compensation contracts and their

bank’s risk.

To distinguish between any causal effect of bank executives’ compensation contracts on their

risk-taking decisions and endogenous matching, we follow the approach developed by Klein and

Vella (2010). We refer to this method as “control function regression” since it builds on the con-

trol function approach of Heckman (1976, 1978, 1980) and Heckman and Robb (1985, 2000). The

standard approach for identifying the causal effect of executives’ contractual incentives on their

firm’s risk is to estimate a two-stage least squares model where the first-stage models executives’–

potentially endogenous–contractual incentives and the second-stage models firm risk as a function

of executives’ predicted incentives from the first-stage. This approach relies on the availability of a

valid instrument that is correlated with the first-stage dependent variable (e.g., executives’ contrac-

tual incentives), but is uncorrelated–or, more technically, mean independent–with the second-stage
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error. Klein and Vella (2010) recognize the difficulty in finding such an instrument and instead

decompose the endogenous component of second-stage (structural) error into two multiplicative

components by regressing it on the first-stage error: (i) the correlation between the first- and

second-stage errors, and (ii) the ratio of the standard deviations of these two errors. The decom-

position illustrates that heterogeneity in the standard deviation ratios provides information about

the severity of the endogeneity problem. Because the degree of bias in OLS coefficient estimates

depends on the severity of the endogeneity problem, the approach uses differences between the

standard deviation ratio across different subsamples to correct for the endogeneity problem and, in

turn, identify the causal effect.3

The following example illustrates how variation in the standard deviation ratio allows us to

identify the causal effect of V ega on bank risk in our setting. Consider banks in two different

markets: banks on the east and west coasts. Suppose that east coast banks have a larger standard

deviation ratio than do west coast banks.4 Further suppose that separate OLS regressions of

bank risk on V ega in the two markets produce similar coefficient estimates. Since the endogeneity

bias–if any–is the product of (i) the correlation between the first- and second-stage errors and (ii)

the standard deviation ratio, finding similar OLS coefficients in the two markets implies a small

correlation between the first- and second-stage errors. If the correlation were large, because the

standard deviation ratios differ across the two markets, a larger correlation between the first- and

second-stage errors–i.e., a more severe endogeneity problem–would produce larger differences in

the OLS coefficients across the two samples. This example shows how any differences in both OLS

coefficients and standard deviation ratios across markets provides information about the correlation

between the first- and second-stage errors, which is the empirical manifestation of the endogeneity

problem. The innovation is that the decomposition does not require joint-normality as in Heckman

(1976), and simply re-expresses the OLS coefficient from regressing the second-stage error on the

first-stage error.

3 Mathematically, the OLS estimate from regressing Y on X, denoted by β̂, equals β + ρ
ση
σξ

, where β represents the

causal effect, ση is the standard deviation of the residuals of Y , σξ is the standard deviation of the residuals from
a first-stage model of X, and ρ = corr(X,Y ). From the formula β̂ = β + ρ

ση
σξ

, regressing Y on X as well as the

interaction between
ση
σξ

and X identifies β and ρ.
4 We remain agnostic about why the standard deviation ratios differ because the structural errors are, by definition,

unobservable. However, they may differ because of differences in banks’ (i) business models, (ii) local labor market
supply, (iii) regulatory incentives and oversight, or (iv) local lending-market conditions. For these reasons, and as
discussed later, we define markets based on geographic regions specified by regulatory oversight.
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Our second research question regarding the specific types of risks and risky activities that bank

executives’ contracts cause them to take stems from banks’ role as financial intermediaries that

are exposed to a variety of risks and engage in risky activities that distinguish them from their

non-financial counterparts.5 Accordingly, limiting our analysis to traditional measures of risk (e.g.,

stock return volatility) and risky activities (e.g., R&D and CAPEX) would undoubtedly paint

an incomplete–and, more likely, misleading–picture of banks’ risk profiles. Moreover, since the

essential functions of banks (e.g., maturity transformation) might require them to bear a certain

amount of risk and engage in specific risky activities, bank executives might have little discretion

to alter these risks, regardless of their contractual incentives. Since equity portfolio Vega provides

executives with an unambiguous incentive to take risk, these tests allow us to infer the specific

types of risk and risky activities that are “controllable” (e.g., Hölmstrom, 1979, 1982). In other

words, to the extent there is no detectable causal relation between Vega and a particular type of

risk (e.g., systemic) or a specific risky activity, it suggests that the risk or activity is not under the

executives’ control and therefore is not influenced by their equity incentives.

We first examine the effect of V ega on systemic risk, which is the risk that is central–and largely

unique–to the banking industry. Systemic risk is usually defined as any risk that may affect the

financial system as a whole (De Bandt and Hartmann, 2000; Freixas and Rochet, 2008, p.235), and

can be driven by spillovers from one institution to another as well as common exposures across

multiple banks. We focus on two measures of systemic risk: MES, marginal expected shortfall

following Acharya et al. (2017), which is more likely to capture common exposures, and ∆CoV aR

following Adrian and Brunnermeier (2016), which captures both spillover effects and common

exposures. We find a positive relation between V ega and systemic risk in OLS regressions, but no

significant relation between V ega and systemic risk in the control function regressions following the

approach from Klein and Vella (2010). Although the control function regressions produce larger

standard errors due to their reliance on group-specific estimates of the standard deviation of the

residuals, the coefficient estimates on V ega are significantly different from their counterparts in the

OLS regressions across all specifications. The estimated coefficients on V ega in the control function

5 Freixas and Rochet (2008, p. 265) explain that “the management of risks can be seen as the major activity of
banks” (emphasis supplied). They further explain that “Banks have to control and select the risks inherent in
the management of deposits, loan portfolios, securities, and off-balance-sheet contracts. Like any limited liability
firm, banks are subject to both liquidity risk and solvency risk, but the consequences of these risks are much more
dramatic for banks than for the other sectors of the economy.”

5



regressions are roughly one-half and two-thirds the size of their OLS counterparts in the ∆CoV aR

and MES specifications, respectively. Since systemic risk pertains to inherently rare events (e.g.,

financial crises), an annual window–which is typical for measuring risk–may not be appropriate if

systemic risk manifests over a relatively low frequency. We therefore examine whether V ega causes

systematic risk over a longer-horizon (Acharya and Naqvi, 2012). We continue to find no significant

relation between V ega and systemic risk for up to three years after the measurement of V ega based

on our control function regressions. Overall, these findings suggest that endogenous matching is

responsible for any positive association between V ega and systemic risk observed in the data.

Given the lack of a statistically detectable relation between V ega and systemic risk in our

full sample, we next examine whether there is a differential relation during economic expansions

and downturns. Acharya and Naqvi (2012) show that risk-taking during expansions can lead to

excessive lending, which suggests that the effects of risk-taking incentives on systemic risk might

not manifest immediately and only become detectable during economic downturns. Consistent with

this conjecture, we find that a one standard deviation increase in V ega increases one-, two-, and

three-year-ahead systemic risk (MES) by 0.42, 0.65, and 0.60 percentage points, respectively, if the

economy experiences a downturn during the subsequent one, two or three years. In contrast, the

increase is 0.10, 0.14, and 0.09 percentage points, respectively, if the economy does not experience

a downturn in one, two or three years. Collectively, these findings suggest that bank executives’

equity incentives cause them to take systemic risk during economic expansions but–perhaps because

of the infrequent nature of negative outcomes from systemically risky activities–that this relation

is only detectable with a lag and manifests during economic downturns.

To provide evidence on the channels through which V ega gives rise to systemic risk, we examine

two primary banking activities that may generate this risk. Specifically, we examine commercial and

industrial (C&I) loans and non-agency mortgage backed securities, which are both considered to be

relatively riskier activities given the higher likelihood of losses relative to other types of loans and

investments (DeYoung et al., 2013). We find that V ega leads to a larger proportion of commercial

and industrial loans (CommLoans) in banks’ lending portfolios as well as a larger proportion of

non-agency mortgage backed securities (MBSNA) in their investment portfolios. This suggests

that V ega affects systemic risk by encouraging managers to increase their banks’ exposure to C&I

lending and non-agency mortgage backed securities.
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Our paper makes multiple contributions to several distinct literatures. First, prior executive

compensation studies provide mixed evidence about the effect of bank executives’ contractual incen-

tives on their risk-taking decisions. We contribute to this literature by introducing an econometric

technique that, coupled with key institutional features of the banking industry, allows us to iso-

late (i.e., identify) the extent to which bank executives’ contractual incentives cause them to take

risk as opposed to reflecting the endogenous matching of executives and banks. By mapping a

priori industry-specific knowledge about the banking industry and bank executive labor market

into the assumptions needed to apply the method outlined by Klein and Vella (2010), our paper

demonstrates how this technique can be used in other settings to identify the causal effects of

endogenously designed contracts. In addition, regardless of whether they are explicitly stated or

implicitly invoked, any method for causal inference relies on inherently untestable identifying as-

sumptions (Cartwright, 1979; Holland, 1986; Pearl, 2001). Our methodology is no exception. We

therefore assess the sensitivity of our inferences to our maintained identifying assumption that we

have correctly identified distinct banking markets to alternative definitions of markets. In doing

so, we contribute to the emerging branch of the causality literature that advocates the use of sensi-

tivity analysis and partial identification techniques (Manski, 2010; Rosenbaum, 2010; Tamer, 2010;

Armstrong, 2013).

Second, we examine industry-specific measures of bank risk over different horizons. Both inno-

vations are important in the own right, and together provide new insight into the nature of banks’

risk-taking activities and the horizons over which these risky activities manifest in bank risk. Prior

risk-taking studies have largely neglected systemic risk, presumably because most large-sample

studies deliberately exclude banks and other financial institutions. This is an extremely important

gap in the literature because banks’ exposure to and contribution to the creation of systemic risk

is a key distinguishing feature that is intimately related to their role in credit provision. Moreover,

analysis of systemic risk is complicated by the fact that it relates to inherently infrequent events.

Accordingly, standard research designs from the risk-taking literature are unlikely to be adequate

for powerful tests to detect this specific type of risk. Showing that a relation between Vega and

systemic risk manifests only during economic downturns and does so with a lag highlights the im-

portance of constructing empirical tests that correspond to the appropriate outcome horizon of the

examined risk-taking activities.
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Third, in virtue of our first two contributions–namely assessing the nature of causality and

examining multiple different types of risk and risky activities–our evidence speaks to the potential

efficacy of regulations aimed at curbing risk-taking at banks (e.g., the Section 956 mandate). Our

findings should therefore be of interest to bank regulators and other stakeholders in the ongoing

debate surrounding executive compensation practices in these important institutions. Since a causal

effect of vega on systemic risk only manifests during economic downturns–and with a lag–regulators’

ability to constrain risk-taking may be more limited than is presumed by the Section 956 mandate

and may also require more foresight than previously assumed.

2 Background and Related Literature

2.1 Risk-taking in the Banking Industry

Although executives at both banks and non-financial firms engage in risky activities, the cen-

tral role of banks in the financial system suggests that the consequences of their risk-taking can

have additional–and potentially out-sized–effects on the broader economy. For example, Bernanke

and Gertler (1995) and Bernanke et al. (1999) discuss how lending restrictions during economic

downturns can amplify macroeconomic contractions and exacerbate financial crises. A particular

concern is banks’ exposure and contribution to systemic risk, which, at a broad level, refers to the

potential for risk to propagate through the financial system. As discussed by Adrian and Brunner-

meier (2016), institutions can be systemically risky by themselves–especially those that are large

and interconnected–or collectively, which typically results from banks engaging in similar business

activities that have similar exposures to financial risks.

Following the most recent financial crisis, the structure of bank executives’ compensation con-

tracts has received increased attention and scrutiny as a potential source of their incentives to take

risk. Symptomatic of these concerns, Section 956 of the Dodd-Frank Act, bank regulators have

been charged with writing rules to restrict compensation contracts that encourage “inappropriate

risk-taking.” The proposed rule discusses concerns related to systemic risk, stating that “Larger

financial institutions in particular are interconnected with one another and with many other com-

panies and markets, which can mean that any negative impact from inappropriate risk-taking can

have broader consequences.” The proposed rule also cites business decisions related to lending and
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investments, which are typically the two largest classes of assets on banks’ balance sheets. More-

over, these two decisions are particularly susceptible to systemic risk concerns because banks can

take actions that create a build up of latent risk in their lending and investment portfolios that

does not materialize until an economic downturn.

2.2 Related Literature

Our study lies at the intersection of–and contributes to–two streams of research. First, our study

adds to the literature that examines whether executives’ contractual incentives cause risk-taking

in general, and at banks in particular. Studies in this literature tend to focus on broad, market-

based measures of risk that are intended to capture the collective result of the numerous risky

activities that are presumably in part, if not entirely, under executives’ control. These measures

include total, systematic, and idiosyncratic stock return volatility and the literature provides mixed

evidence regarding the existence of a causal effect.

Houston and James (1995) find a negative relation between bank executives’ equity incentives–

measured as the percentage of options held and the percentage of ownership–and total risk, which

they interpret as evidence that bank compensation policies do not encourage risk-taking. Similarly,

Cheng et al. (2015) also fail to find evidence of a causal effect and instead conclude that the positive

relation between bank executives’ total direct compensation and their bank’s total risk is the result

of a risk-premium that is compensation for working at riskier banks. However, in contrast to these

studies, Chen et al. (2006) document a positive relation between the value of bank managers’ options

and multiple risk measures of bank risk, including total, systematic, and idiosyncratic stock return

volatility and interest rate risk. DeYoung et al. (2013) also find a positive association between

bank managers’ vega and total, systematic, and idiosyncratic risk. Both of these studies conclude

that bank managers’ contractual incentives encourage risk-taking. Finally, Low (2009) examines

changes in the Delaware takeover laws and finds a positive association between vega and total risk

in a sample of non-financial firms. Armstrong and Vashishtha (2012) also examine non-financial

firms and find a positive relation between vega and systematic risk, but no relations between vega

and idiosyncratic risk.

The second stream of literature to which our study contributes examines the influence of con-

tractual incentives–primarily vega–on risky bank-specific activities surrounding the most recent
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financial crisis in 2007 - 2009. Studies in this literature provide somewhat different inferences from

those that focus on longer time periods and are not crisis-specific. For example, Chesney et al.

(2012) find no relation between pre-crisis vega and loan write-downs during the crisis. However,

they do find a positive association between the sensitivity of executives’ wealth to asset return

volatility and write-downs. Boyallian and Ruiz-Verdú (2017) find no evidence of a relation between

pre-crisis vega and the incidence of bank failure during the crisis, but find a positive relation between

pre-crisis delta and failure. Similar with these conclusions, Fahlenbrach and Stulz (2011) find no

consistent evidence that poorly aligned pre-crisis contractual incentives–including vega, delta, cash

bonuses, and stock ownership–had an effect on bank performance during the crisis. Although these

studies largely conclude that bank executives’ pre-crisis equity incentives did not influence bank

outcomes during the crisis, several studies present evidence to the contrary. Specifically, Gande and

Kalpathy (2017) find that pre-crisis vega is positively associated with the receipt of government

assistance during the crisis. Larcker et al. (2017) find evidence of a positive relation between vega

and systematic risk at banks with retained interest in securitization during the pre-crisis period.

Moreover, they document that pre-crisis vega is positively associated with total and systematic risk

during the crisis and that aggregate vega in the bank industry as a whole is associated with future

declines in economy-wide indicators, including GDP growth.

Our primary contribution to these two literatures is to provide evidence about the extent to

which any relation between bank executives’ contractual incentives and bank risk represents a

causal effect. Although the discrepant conclusions in the aforementioned studies may be the result

of differences in research designs, sample periods, or measures of incentives and risk, another

possibility is the endogenous matching of executives and banks. Another important contribution

of our study is our focus on systemic risk, which is the chief concern of bank regulators and other

bank stakeholders given the potentially severe economic consequences of bank distress. Moreover,

our research design allows for the possibility that contractual incentives induce executives to take

systemically risky actions that manifest over a relatively long horizons (e.g., multiple years) by

examining multiple different time periods and several distinct activities that are central to banks’

business model.
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3 Research design

3.1 Variable measurements

We are primarily interested in systemic risk, which we measure two different ways. First, marginal

expected shortfall (MES) captures a bank’s expected equity loss when the market experiences losses

in the extreme left-tail of the distribution (Acharya et al., 2017). Specifically, MES is calculated

as the bank’s average return during the market’s 5% worst days during year t, multiplied by -1 so

that larger values of MES correspond to greater systemic risk.

Second, ∆CoV aR captures dependence in the tail of the loss distribution between the banking

system and a particular bank. As discussed by Adrian and Brunnermeier (2016), ∆CoV aR cap-

tures systemic risk created by common exposures as well as spillover effects, and is based on the

conditional value at risk (CoV aR) of the banking system. We focus on the estimation of ∆CoV aR

which involves the contribution of each bank i to systemic risk of the banking system (sys) (i.e.,

examining systemic risk of the banking system conditional on bank i being in a certain state) fol-

lowing Adrian and Brunnermeier (2016).6 Specifically, we first estimate the following bank-level

quantile regressions using bank i’s full time series of weekly return data over the sample period,

requiring at least 260 observations:

Reti,t = αqi + γqiMt−1 + εqi,t (1)

Retsys|i,t = αqsys|i + γqsys|iMt−1 + βqsys|iReti,t + εqsys|i,t (2)

Reti,t represents bank i’s weekly return, Retsys,t represents the value weighted weekly return of the

commercial banking sector (three-digit SIC codes 602 and 603), and M is a vector of macroeconomic

variables, which includes (1) change in the three-month treasury bill rate, (2) change in the yield

curve slope – measured as the difference between the composite long-term bond yield and three-

month treasury bill rate, (3) short-term TED spread – measured as the difference between the

three-month LIBOR rate and the three-month secondary market treasury bill rate, (4) change in

the credit spread – difference between Moody’s Baa-rated bond yield and the ten-year treasury rate,

6 In untabulated analysis, we also examine the ∆CoV aR measure that reverses the conditioning (i.e., involves
systemic risk of each bank i conditioning on the state of the banking system (sys)), referred to as Exposure∆CoV aR
in Adrian and Brunnermeier (2016), and find similar inferences to those from the main analyses.
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(5) rolling 22-day standard deviation of the value-weighted market return, (6) the value-weighted

market return, and (7) value-weighted real estate sector (two-digit SIC codes 65 and 66) return.

Using the predicted values from Equation (1) and Equation (2), we construct both V aR and

CoV aR as follows:

V aRqi,t = α̂qi + γ̂qiMt−1 (3)

CoV aRqi,t = V aRq
sys|Reti,t=V aRqi,t

= α̂qsys|i + γ̂qsys|iMt−1 + β̂qsys|iReti,t (4)

The final step is to calculate the difference in CoV aR when bank i is in a distressed state (the 1%

worst weeks, Reti,t = V aRq=1%
i,t ) compared to a typical state (median, Reti,t = V aRq=50%

i,t ).

∆CoV aR1%
i,t = β̂qsys|i(V aR

q=1%
i,t − V aRq=50%

i,t ) (5)

∆CoV aR1%
i,t is constructed at the weekly level. Thus, prior to performing our analyses, we sum

this measure to the annual level and multiply the measure by -1 so that larger values correspond

to greater systemic risk.

We focus on risk-taking incentives from bank executives’ equity (i.e., stock and option) portfo-

lios. Our primary independent variable of interest is V ega because of its theoretically unambigu-

ous risk-taking incentives. V egai,t−1 and Deltai,t−1 are the portfolio Vega and Delta of the five

highest-paid executives of bank i in year t− 1. Portfolio vega is the change in the risk-neutral (i.e.,

Black-Scholes) value of the executives’ option portfolios for a 0.01 change in the standard deviation

of the underlying stock returns. Similarly, portfolio delta is the change in the risk-neutral value of

the executives’ stock and option portfolios for a one percent change in the value of the underlying

stock price. 7

7 The parameters of the Black-Scholes formula are calculated as follows. Annualized volatility is calculated using
continuously compounded monthly returns over the previous 60 months, with a minimum of 12 months of returns,
and winsorized at the 5th and 95th percentiles. If the stock has traded for less than one year, we use the imputed
average volatility of the firms in the Standard and Poors (S&P) 1500. The risk-free rate is calculated using the
interpolated interest rate on a Treasury note with the same maturity(to the closest month) as the remaining life
of the option, multiplied by 0.70 to account for the prevalence of early exercise. Dividend yield is calculated as
the dividends paid during the previous 12 months scaled by the stock price at the beginning of the month. This is
essentially the same as the method outlined by Core and Guay (2002).
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3.2 OLS model

To examine the relation between bank executives’ incentives and their firms’ risk, we estimate the

following specification:

Riski,t+s = δt + β1V egai,t−1 + β2Deltai,t−1 + β3Sizei,t−1 + β4BTMi,t−1 + β5Capitali,t−1

+ β6Growthi,t−1 + ε (6)

Riski,t+s represents each of our risk measures for bank i in year t+s where s = 0, 1 or 2 to capture

risk one-, two-, or three-years ahead of the measurement of bank executives’ incentives. Consistent

with prior literature, we also include several control variables that are likely to be correlated with

both equity incentives and risk-taking. Specifically, larger banks are likely to have different risk

profiles and risk-taking incentives, so we control for bank size using the natural logarithm of total

assets (Size). To capture differences in investment opportunities, we include the book-to-market

ratio (BTM) and annual asset growth rate (Growth). We also include the ratio of equity capital to

total assets (Capital) to control for differences in capital structure. Finally, we include year fixed

effects to control for secular changes in risk (e.g., across the business cycle).

Model (6) assumes that, given the control variables and year fixed effects, V ega is exogenous

with respect to unobserved factors that drive bank risk. However, as noted in the contracting

literature in general, and the banking literature in particular (Cheng et al., 2015), unobserved bank

and executive characteristics that influence the bank-executive match can affect both executive

compensation and risk-taking. For example, a bank that has a relatively risky loan portfolio

might offer compensation contracts with greater risk-taking incentives to attract certain types of

executives. Alternatively, executives who are prone to risk-taking might match with banks that

offer more risk-taking incentives. In these cases, V ega has no causal effect, meaning that holding

the executive-bank match fixed, there would be no change in risk-taking in response to a change in

vega.

The selection problem is two-sided in the sense that both unobserved executive and bank char-

acteristics can affect the outcome. Dealing with such endogeneity can be nontrivial because a

valid instrument has to be exogenous to both unobserved bank and executive characteristics. For
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example, an exogenous shock to bank executives’ risk-taking incentives alone may not be a valid

instrument if executives can select into banks that are less exposed to the shock or find ways to

neutralize the shocks. Specifically, banks can hire executives who are more tolerant of risk–and

are therefore more prone to risk-taking–which could either mute or completely undo the effect of

regulations that constrain bank executives’ contractual incentives. Moreover, as shown by Cheng

et al. (2015), both the executive-bank match and risk-taking tend to be persistent. Consequently,

identification strategies that rely on time-series (i.e., within-firm and within-executive) variation

are unlikely to yield powerful tests. To deal with the two-sided selection problem, we adopt the

novel identification strategy developed by Klein and Vella (2010), which we now discuss in more

detail.

3.3 Control function regression

The control function regression starts with a typical two-stage regression model. Recall that V egait

represents the V ega of an executives’ equity portfolio, and Riskit+s represents the risk of bank i

in year t+ s. V egait and Riskit+s are specified by the following first- and second-stage models:

V egait = αXit + ξit (7)

Riskit+s = β1V egait + βXit + ηit+s (8)

where β1 captures the effect of V ega on banks’ risk, Xit represents the same vector of observable

characteristics as in (6) including intercepts, and ξit and ηit+s are unobserved factors that affect

V egait and Riskit+s, respectively. If ηit+s is correlated with ξit, an OLS regression of Risk on V ega

will be biased. Let the correlation coefficient between ηit+s and ξit be ρ.

To solve the endogeneity problem, we follow Klein and Vella (2010) and decompose the error

term ηit+s as follows:

ηit+s = ρ
ση
σξ
ξit + ωit+s (9)

where ρ =
cov(ηit+s, ξit)

var(ξit)
. The decomposition is achieved by a simple regression of ηit+s on ξit

and does not assume that ηit+s and ξit are jointly normal. Klein and Vella (2010) show that ρ is

identified under the following assumption:
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1. The standard deviation ratio of the residuals of equations (7) and (8),
ση
σξ

, varies across

observations.

To understand the intuition behind this identification strategy, substituting (9) into the risk-

taking equation (8) gives

Riskit+s = β1V egait + βXit + ηit+s (10)

= β1V egait + βXit + ρ
ση
σξ

(V egait − αXit) + ωit (11)

Equation (11) shows that when
ση
σξ

is a constant, γ1 is not identified because the term V egait−

αXit is collinear with the regressors V egait and Xit. However, when
ση
σξ

varies across observations

and its interaction with ξit is not collinear with V egait, the variation in
ση
σξ

(V egait−αXit) identifies

both ρ and γ1.

The main advantage of this approach is that identification does not rely on the usual functional

form assumption of joint normality when researchers do not specify an instrumental variable for the

endogeneous regressor. The endogenous component of the structural error is, in turn, decomposed

into the following two components: the correlation coefficient ρ and the standard deviation ratio

ση
σξ

. The decomposition simply regresses the second-stage error on the first-stage error and does

not assume joint normality. Another advantage is that variation in the standard deviation ratio is

due to heteroskdasticity, which is a testable feature of linear regression models.

3.3.1 Modeling ση and σξ

As illustrated in the previous section, identification of the causal effect relies on variation in the

standard deviation ratio,
ση
σξ

. To avoid imposing assumptions on the determinants of the standard

deviation ratio and to maintain a parsimonious structure, we assume that the standard deviaition

ratio varies across “markets” as follows:

ση
σξ
∈
{
ση,m
σξ,m

| m ∈ {1, ...,M}
}
,

where m denotes a market.

The definition of markets should be justified on a priori theoretical grounds and requires that
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the unobserved factors that affect both bank executives’ risk-taking incentives and their bank’s risk

exhibit different variances across markets. Although we are agnostic about the specific factors that

affect the standard deviation ratios, we argue that differences in the local labor market supply and

demand, regional economic conditions, and regulatory incentives are all likely to generate variation

in the standard deviation ratio. Since most of these factors stem from differences in geographic

and regulatory exposure, we assign banks to four geographical regions based on the Office of the

Comptroller of the Currency (OCC) supervision structure. We then consider each region-year

combination to be a distinct market. In other words, we assume that
ση
σξ

varies across geographical

markets and time. We provide evidence on the nature of variation in standard deviation ratios

across markets in section 4.

3.3.2 Discussion

The control function method differs from an IV regression in that it does not explicitly isolate the

exogenous variation that induces changes in risk-taking only through V ega. Identification instead

relies on differences in the standard deviation ratios across subsamples (e.g., markets), because

the standard deviation ratio provides information about the severity of the endogeneity problem.

For a given correlation coefficient ρ, a smaller standard deviation ratio implies a larger amount of

exogenous variation in V ega that is unrelated to Risk, which, in turn, means that endogeneity is less

of a concern (and vice versa). In other words, the standard deviation ratio is inversely related to the

amount of exogenous variation in the first-stage error relative to the second-stage error. Variation

in the severity of the endogeneity problem coupled with differences in OLS regression coefficients

across different subsamples (e.g., markets) identifies the correlation between the first- and second-

stage errors. Once this correlation is known, it can be used to “correct for” any endogenous relation

and obtain consistent estimates of the causal effect of the endogenous variable on the dependent

variable (e.g., Vega and bank risk, respectively). For example, finding similar OLS coefficients

across markets that have different standard deviation ratios implies that the correlation coefficient

is not large. If the correlation coefficient were large, OLS coefficients across markets would have

been very different.

For the identification argument to hold, the control function method estimates a constant causal

effect and a single correlation coefficient between the two structural errors for all markets. Assuming
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a single common correlation coefficient is not innocuous and imposes structure on the nature of the

endogeneity problem. Klein and Vella (2010) illustrate a few examples. For example, ξ = ωξξ
∗ and

η = ωηη
∗. This particular structure implies that a larger variance of the first-stage error relative

to that of the second-stage error indicates a smaller endogeneity problem because the first-stage

error is more likely to contain exogenous variation that is unrelated to risk-taking. Unlike IV that

solves the endogeneity issue using explicit exogenous variation, the control function approach by

Klein and Vella (2010) relies on implicit exogenous variation embedded in the heteroskadasticity of

the error terms.

Although we argue that identification using control function regressions has a number of ad-

vantages given the nature of the endogeneity problem in our setting, there are several caveats to

note. First, identifying ρ requires variation in
ση
σξ

, as shown in (10). Although we argue that this

is the case in our setting, it may not be so in other settings, which would preclude the use of this

technique. Second, although the control function approach does not rely on joint normality of the

errors, at a minimum, researchers need to specify how the standard deviation ratio varies. Relat-

edly, we assume that ρ does not vary across markets, although this assumption is not necessary

for identification. If there are reasons to expect ρ to systematically vary with certain observables,

the researcher would need to specify a priori how ρ varies, which is also required by alternative

econometric methods, including OLS. Specifically, this idea is similar to allowing for heterogeneous

treatment effects in that researchers need to specify how β1 varies across either individual or groups

of observations. Third, the control function approach requires estimating the variance of ξ and η

in each market. More observations in a market allow for more accurate variance estimates, but

leave fewer variances to identify ρ. Consequently, standard errors can be large, which biases against

finding significant coefficients. As such, we perform statistical tests across the OLS and control

function regressions to assess the power of our tests.

4 Sample selection and descriptive statistics

4.1 Sample selection

Our sample is comprised of observations with required data at the intersection of Compustat,

CRSP, Execucomp, and FR Y-9C regulatory reports during the period 1994 - 2016. We use
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Execucomp data to construct our contractual incentive measures, V ega and Delta, and Compustat

and CRSP data to measure the control variables (Size, BTM , Capital, and Growth). For the

risk measures, we obtain daily return data from CRSP and macroeconomic variables from the

Federal Reserve Economic Data (FRED) database, the U.S. Treasury Department, and CRSP.8 In

additional analysis, we require lending and investment specific variables, which are obtained from

the FR Y-9C regulatory reports. Given that we use one-, two-, and three-year ahead measures of

risk, our final sample period for analysis is 1994 - 2013 and includes 1,339 bank-year observations.

4.2 Descriptive statistics

We present descriptive statistics for the pooled sample in Table 1. The first panel of the table

presents the distribution of the systemic risk measures and two specific business activities, commer-

cial and industrial (C&I) lending (CommLoans) and investments in non-agency mortgaged-backed

securities (MBSNA), through which V ega potentially affects systemic risk. These variables are

presented as percentages, with the exception of ∆CoV aR1%. The table reveals that the average

loss on the worst 5% days for the banking system during the year is 2.9% (MES), while the mean of

∆CoV aR1% is 1.7. Moreover, approximately 21% of the loan portfolio is comprised of CommLoans

while approximately 6% of the investment portfolio is comprised of MBSNA, on average.

[Insert Table 1]

The second panel provides descriptive statistics for the compensation variables. For interpre-

tation purposes, we present descriptives for the compensation variables prior to taking the log.

The descriptive statistics for V ega indicate that a 0.01 increase in stock return volatility results

in an approximately $282,000 increase in the average risk-neutral value of bank executives’ option

portfolio. Similarly, a 1% increase in stock price increases the option portfolio value by $939,000

on average (Delta). The final panel presents descriptive statistics for several bank characteristics.

The average book-to-market ratio is 66.8%, capital ratio is 9.2% and asset growth rate is 12.3%.

Untabulated analyses indicate that the mean (median) of total assets is $74 billion ($12 billion)

8 Market volatility, the market return, and the real estate sector return are constructed using CRSP data. The
three-month treasury bill rates, three-month LIBOR rate, 10-year treasury rate, and Moody’s Baa-rated bond
yield are taken from FRED. The long-term composite bond yield is taken from FRED prior to 2000 and the U.S.
Treasury department thereafter.
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and as such, we take the log of total assets prior to conducting the analyses in order to measure

size.

4.3 Portfolio sorts of V ega and systemic risk

Figure 1a illustrates the relation between V ega and systemic risk. Each year, we rank banks into

deciles by V ega and compute the average MES for each V ega decile. To account for a potential

lead-lag relation, we lead the measurement of MES by that of V ega by two years. The figure

shows a positive relation between V ega and MES. Unreported figures indicate that the same

pattern exists when using ∆CoV aR to measure systemic risk and when the measure of systemic

risk leads V ega by either one or three years. The positive relation between V ega and systemic risk

is consistent with regulators’ concern that V ega may contribute to systemic risk. However, it is

possible that unobserved executive-bank matching may be responsible for this pattern rather than

a causal effect.

[Insert Figure 1]

Because systemic risk manifests primarily during economic downturns, Figure 1b presents the

relation between V ega and systemic risk separately during economic contractions and expansions to

investigate whether risk-taking incentives further exacerbate systemic risk during economic down-

turns. We identify economic downturns as the following years: 2001, 2008, and 2009. The dashed

blue line presents the relation between V ega and MES when MES is measured during economic

expansions, while the solid red line presents the same relation when MES is measured during

economic downturns. The figure shows a robust positive relation between V ega and MES during

both expansions and contractions. However, the magnitude of the relation is much larger during

economic downturns: moving from the lowest to the highest decile of V ega, systemic risk during

economic expansions increases from 2.2 to 2.6. This increase is much smaller, both in absolute and

relative terms, than the increase in systemic risk from 5.7 to 7.6 during economic downturns. In

other words, although systemic risk is, on average, higher during economic downturns than during

expansions, risk-taking incentives seem to further amplify systemic risk during economic down-

turns. Also note that, by construction, risk-taking incentives are not measured during economic

downturns because V ega is measured two years prior to the measurement of systemic risk. These
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results are consistent with the predictions from Acharya and Naqvi (2012) that risk-taking activi-

ties during economic expansions “sowed the seeds” of systemic risk that manifest during economic

downturns.

4.4 Variation in the standard deviation ratio

As discussed in section 3.3, the control function regression includes the ratio of the standard devia-

tions of the first- and second-stage residuals interacted with the first-stage residuals as an additional

regressor. The OLS regression coefficient on the interaction term equals the correlation coefficient

between the two residuals. In theory, the correlation coefficient is identified as long as variation in

the standard deviation ratio is not zero. In practice, as with any regression, sufficient variation in

a regressor is crucial for a high-powered test.

To gauge the extent to which there is heterogeneity across markets, we examine the standard

deviation ratios of each risk measure by region in Panel A and by year in Panel B of Table 2. Because

the standard deviation ratio of the residuals ultimately depends on the standard deviations of the

variables of interest (i.e., V ega and the risk measures), we report the standard deviation ratios of

each risk measure and V ega before estimating the control function regression. These descriptive

statistics help us gauge the heterogeneity across markets. If the standard deviation ratio of a risk

measure and V ega exhibit variation across markets, the likelihood that the residuals also exhibit

variation will increase, which can be used as a preliminary diagnosis test.

[Insert Table 2]

Table 2 shows that the ratios of the standard deviations of each risk measure and V ega exhibit

significant cross-sectional and time series variation. Panel A presents the standard deviation ratios

for each of the OCC regions, where the ratio is defined as the standard deviation of each of the risk

measures to the standard deviation of V ega. Panel A shows that Region 1 has the largest standard

deviation ratio and Region 2 has the smallest. The pattern is consistent across all risk measures,

which suggests that the risk measures capture related constructs.

Panel B presents the standard deviation ratios for each year. The economic magnitude mag-

nitude of the standard deviation ratio differs from that in Panel A. For example, the standard

deviation ratio for MES is around 1.1 to 1.4 across regions in Panel A but varies from 0.18 in 2012
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to 1.33 in 2008 in Panel B. The result suggests that, relative to V ega, MES exhibit large time-series

variations and is consistent with MES capturing systemic risk, which manifests primarily during

economic downturns. ∆CoV aR1% also exhibits a similar pattern.

5 Results

5.1 Vega and systemic risk

5.1.1 Main results

We present estimates of the effect of V ega on systemic risk, measured using either MES or

∆CoV aR1%, in Table 3. We use one-, two-, and three-year-ahead measures of systemic risk to

allow for the possibility of a lag between when executives make risky decisions and when the result-

ing risk manifests.9 Columns (1), (3), and (5) of Panel A provide estimates from the OLS model

using MES as the dependent variable for one-, two-, and three-years ahead, respectively. In each

of the three columns, the coefficient on V ega is positive and significantly different from zero.

[Insert Table 3]

To separately identify the causal effect of bank executives’ incentives and the endogenous match-

ing of executives and banks, we also present results from the control function regressions. Columns

(2), (4), and (6) of Panel A present results using the control function regression and show that

the coefficient on V ega is no longer statistically significant for any of the windows. Moreover,

the coefficient magnitudes are substantially smaller than those of their OLS counterparts, and all

of the differences between the corresponding coefficients across the two methods are statistically

significant.

Panel B of Table 3 provides estimates from the same specification using ∆CoV aR1% as the

dependent variable. Similar to MES, we find positive and significant coefficients on V ega in each

of the three time periods examined. However, using the control function regressions, the estimate

on V ega becomes insignificantly different from zero for the two- and three-year ahead periods.

9 Prior research primarily examines one-year ahead risk-taking measures. Although this is sensible for typical mea-
sures of risk in non-financial firms (e.g., stock return volatility, R&D expenditures, leverage), it may not be appro-
priate for systemic risk, which is a ”lower-frequency” variable and negative realizations might only be empirically
detectable over a sufficiently wide window. This is analogous to the “peso problem” in asset pricing literature.
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Moreover, the magnitude of the estimates in the control function regression is smaller than its

counterpart in the OLS regression and, as with MES, the difference is statistically significant.

Collectively, the estimates from the control function regressions provide no evidence of a causal

relation between systemic risk, measured with MES and ∆CoV aR, and V ega. Instead, the ev-

idence suggests that the positive correlation between V ega and systemic risk up to three years

ahead largely reflects the endogenous matching of executives and banks rather a causal effect.10

Because the standard deviation ratios are estimated for each market with an average of 20

observations, one concern may be that standard errors are large and the power of the test is low.

However, we find that the OLS and control function regression coefficients are significantly different

in the majority of the specifications, which suggests that lack of power is not likely to be responsible

for the insignificant coefficient estimates. Nevertheless, to gauge the power of the control function

regression, we plot the distribution of the coefficient estimates for OLS versus control function

regressions. The idea is that if a control function regression introduces noise, which is entirely

plausible, the coefficient estimates will appear random and cover a much larger area than those

from an OLS regression.

[Insert Figure 2]

Figure 2 shows that the standard errors for the control function regression are larger than

those from the OLS regression. However, it is also clear from the figure that the OLS coefficient

significantly differs from the coefficient from the control function regression.11 The results alleviate

the concern that low power is the main reason why the coefficient is insignificant.

10 In untabulated analyses, we also examine the effect of V ega on next year’s systematic risk, which is an approach
commonly used by prior studies on both banks (DeYoung et al., 2013) and non-financial firms (Armstrong and
Vashishtha, 2012). We find a statistically significant positive effect of V ega on systematic risk when using OLS
regressions, but an insignificant coefficient estimate on V ega in the matching regression, suggesting that the relation
between V ega and systematic risk is also driven by matching between executives and banks. We focus primarily on
systemic risk given its importance and specificity to the banking industry. Moreover, the proxy for systematic risk
relies on realized risk, which may capture additional features of the bank (e.g., information environment) that are
not necessarily related to risk-taking. In addition, the measure presumes that market participants can adequately
decipher risk-taking activities in real time, which may not be a valid assumption in the banking industry given the
greater opacity of their activities (Morgan, 2002).

11 Inferences are similar for ∆CoV aR as well as different horizons of both systemic risk measures.
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5.1.2 Boom vs Bust

This section examines whether the relation between V ega and systemic risk varies over the business

cycle. Prior research discusses how different aspects of banks’ operating environment can result in

increased risk-taking during “boom” periods relative to “bust” periods. Acharya and Naqvi (2012)

illustrate how excess liquidity leads to loosened lending standards, which subsequently results in

increased risk-taking in the lending portfolio. Similarly, Dell’Ariccia and Marquez (2006) show

how information asymmetry between borrowers and banks can lead to loosened credit standards

and lending booms during which banks take on additional risk in their lending portfolios. They

also illustrate how lending booms increase the probability of a banking crisis, which is consistent

with the eventual realization of negative outcomes stemming from the boom period actions (e.g.,

increased lending to lower quality borrowers). Finally, Ruckes (2004) shows that competition can

influence lending standards, leading to more risk-taking in boom periods when credit standards are

lower. Collectively, these studies suggest that risk-taking opportunities–especially those related to

systemic risk–can vary across the business cycle. Accordingly, we separately estimate the relation

between vega and systemic risk during boom and bust periods.

[Insert Table 4]

Table 4 presents results from estimating the control function regression using MES as the

dependent variable and allowing the coefficient on V ega to vary according to whether MES belongs

to a “bust” year.12 Specifically, Bust is equal to one if MES corresponds to the years 2001, 2008, or

2009, and is equal to zero otherwise. We find a positive and significant coefficient on the interaction,

V ega∗Bust, across all three columns. This suggests that V ega leads to increased systemic risk that

manifests during economic downturns. In terms of economic magnitude, a one standard deviation

increase in V ega corresponds to an additional 0.42, 0.65, and 0.60 percentage points of systemic,

respectively, if the economy experiences a downturn one-, two-, or three-years ahead. Alternatively,

during boom periods, the economic magnitude of the effect of V ega on systemic risk is 0.10, 0.14,

and 0.09 percentage points for one-, two-, and three-year ahead systemic risk, respectively.

12For the sake of brevity, we do not tabulate results for the remaining analyses using ∆CoV aR1%, but note that we
obtain similar inferences using this alternative measure.
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5.2 Vega and bank operations

This section examines why a relation between V ega and systemic risk exists (i.e., the operational

decisions that bank executives make that bring about the systemic risk that we documented in

the previous sections). We first examine whether Vega causes banks to change their economic

activities. We focus on two types of activities, namely non-agency mortgage backed securities

(MBSNA) and commercial and industrial (C&I) loans (CommLoans). C&I loans generally result

in higher realized loss rates compared to other loan types (e.g., mortgages) and as such, are viewed

as riskier (DeYoung et al., 2013). Non-agency mortgaged backed securities are those that are not

guaranteed by a government agency or government sponsored enterprise (i.e., Ginnie Mae, Frannie

Mae, Freddie Mac) and were the center of focus in the recent financial crisis. We examine the

relation between these activities and V ega in Table 5, using control function regressions.

[Insert Table 5]

Table 5 demonstrates significant positive effects of V ega on both non-agency mortgage backed

securities and C&I loans. A one standard deviation increase in V ega increases CommLoans and

MBSNA by 3.6 percentage points and 2.3 percentage points, respectively. These results suggest

that a higher V ega leads to more activities that are considered to be risky.

6 Conclusion

Our paper provides evidence on whether bank executives’ contractual incentives cause risk-taking

using a novel approach developed by Klein and Vella (2010). We find that bank executives’ portfolio

vega causes systemic risk that manifests with a lag only during economic downturns. We also

examine the specific risky activities that are motivated by contractual incentives and find that

vega is associated with future commercial and industrial (C&I) lending and investments in non-

agency mortgage-backed securities. Collectively, our results suggest that vega causes systemic risk

in downturns and that two potential mechanisms through which this effect occurs are C&I lending

and non-agency mortgaged backed securities.

We contribute to prior research in several ways. First, we provide evidence on whether execu-

tives’ contractual incentives cause risk-taking at banks. Prior literature provides mixed evidence
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regarding the association, leaving open the possibility that any previously-documented associations

are driven by matching between executives and banks. Second, we focus primarily on systemic risk,

which is of primary concern to bank regulators, and several bank-specific activities that may give

rise to future systemic risk. Finally, we examine several windows over which the effect of vega on

systemic risk may manifest, consistent with prior theoretical studies indicating that the outcomes

of risk-taking behavior may not arise until economic downturns.

These findings also have implications for the compensation guidelines issued by regulators under

Section 956. Our evidence suggests that the regulator presumption that contractual incentives cause

risk-taking is appropriate, but that this effect may only manifest during economic downturns. Thus,

the relation may be more nuanced than previously thought.
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Figure 1: Vega and Systemic Risk
This table presents the relation between of MES and V ega. The vertical axis represents MES, the marginal expected
shortfall, defined in Section 3.1. The horizontal axis represents deciles of V ega. The measurement of MES leads the
measurement of V ega by two years. The left panel presents the relation for the full sample (Figure 1a). The right
panel presents the relation separately for periods of economic booms, Boom, and economic downturns, Bust, where
Bust = 1 if MES is measured during 2001, 2008, or 2009, and zero (one) otherwise. The solid red line captures
economic downturns and the dashed blue line captures economic booms.
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Figure 2: OLS vs Control Function

This figure presents the coefficient distribution from OLS and control function regressions using
model (8) and MESt as the dependent variable. The distribution of the coefficient estimates is
computed from bootstrapping. The solid red line represents the density of coefficient estimates from
the control function regression. The dotted blue line represents the density of coefficient estimates
from the OLS regression. Both regressions include control variables and year fixed effects.
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Table 1: Descriptive Statistics

This table presents descriptive statistics for all variables included in each of the analyses. The sample period is
1994 - 2013. V ega and Delta are the log of portfolio level vega and delta, respectively, measured following Core
and Guay (2002), for the top five executives. MES is marginal expected shortfall, the average bank return on the
worst 5% days for the market during the year, following Acharya et al. (2017), multiplied by 100. ∆CoV aR1% is the
contribution of bank i to the systemic risk of the banking system, following Adrian and Brunnermeier (2016). Both
MES and ∆CoV aR1% are multiplied by -1 so that larger values correspond to greater systemic risk. MBSNA is
non-agency mortgage backed securities scaled by total available-for-sale investments, multiplied by 100. CommLoans
is commercial and industrial loans scaled by total loans, multiplied by 100. Size is the log of total assets. BTM is
the ratio of book equity to market value of equity. Capital is the ratio of equity to total assets. Growth is the annual
growth rate in total assets. Continuous variables are winsorized at the 1st and 99th percentiles.

N Mean SD 25% 50% 75%

Systemic risk measures and business activities
MES 1339 2.875 2.187 1.424 2.151 3.574

∆CoV aR1% 1339 1.739 0.758 1.195 1.595 2.160
MBSNA 1339 5.907 10.268 0.000 1.266 7.483
CommLoans 1339 21.370 11.869 13.762 19.710 26.981

Compensation variables
Vega ($000s) 1339 281.7 521.2 30.7 79.2 282.0
Delta ($000s) 1339 939.4 1357.6 142.0 415.5 1074.6

Bank characteristics
Size 1339 9.712 1.453 8.614 9.405 10.566
BTM 1339 0.668 0.387 0.409 0.573 0.814
Capital 1339 0.092 0.023 0.076 0.090 0.106
Growth 1339 0.123 0.195 0.017 0.074 0.161
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Table 2: Standard Deviation Ratio by Region and Year

This table presents the standard deviation ratio between each of the risk outcome measures and V ega by region in
Panel A and by year in Panel B. MES is marginal expected shortfall, the average bank return on the worst 5%
days for the market during the year, following Acharya et al. (2017). ∆CoV aR is the contribution of bank i to the
systemic risk of the banking system, following Adrian and Brunnermeier (2016).

Panel A

Region MES ∆CoV aR1%

1 1.381 0.465
2 1.168 0.455
3 1.270 0.432
4 1.260 0.382

Panel B

Year MES ∆CoV aR1%

1994 0.230 0.302
1995 0.560 0.338
1996 0.549 0.470
1997 0.631 0.475
1998 0.410 0.436
1999 0.698 0.652
2000 0.499 0.429
2001 0.531 0.451
2002 0.405 0.402
2003 0.302 0.253
2004 0.267 0.240
2005 0.252 0.291
2006 0.377 0.435
2007 1.080 0.571
2008 1.326 0.514
2009 0.512 0.272
2010 0.544 0.314
2011 0.354 0.240
2012 0.185 0.197
2013 0.193 0.178
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Table 4: Vega and Systemic Risk: Boom vs. Bust

This table presents results of regressing MES on V ega and the interaction between V ega and Bust, which is equal
to one if MES is measured during 2001, 2008, or 2009, and zero otherwise. The model is estimated using the control
function regression. MES is measured at multiple intervals (t + s), including one year ahead (t), two years ahead
(t + 1), and three years ahead (t + 2). 95% confidence intervals are reported in parentheses below the coefficient
estimates. Continuous variables are winsorized at the 1st and 99th percentiles.

(1) (2) (3)

MESt MESt+1 MESt+2

V egat−1 0.055 0.078 0.048
[ -0.016, 0.123 ] [ 0.006, 0.151 ] [ -0.023, 0.118 ]

V egat−1 ∗Bustt+s 0.169 0.288 0.29
[ 0.055, 0.292 ] [ 0.137, 0.419 ] [ 0.146, 0.429 ]

Deltat−1 -0.014 -0.018 0.026
[ -0.097, 0.065 ] [ -0.123, 0.07 ] [ -0.06, 0.098 ]

Sizet−1 0.19 0.197 0.165
[ 0.138, 0.243 ] [ 0.149, 0.244 ] [ 0.12, 0.21 ]

BTMt−1 0.729 0.32 0.135
[ 0.491, 0.973 ] [ 0.116, 0.513 ] [ 0.002, 0.296 ]

Capitalt−1 -2.65 -1.237 -1.654
[ -5.087, -0.247 ] [ -3.936, 1.677 ] [ -3.791, 0.597 ]

Growtht−1 0.224 0.392 0.228
[ -0.001, 0.485 ] [ 0.141, 0.643 ] [ -0.026, 0.51 ]

Constant 0.15 1.095 1.941
[ -0.257, 0.505 ] [ 0.65, 1.561 ] [ 1.565, 2.325 ]

ρ 0.02 -0.019 -0.023
[ -0.119, 0.163 ] [ -0.163, 0.114 ] [ -0.157, 0.101 ]

Obs 1339 1339 1339
Year FE Yes Yes Yes
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Table 5: Vega and Bank Operations

This table presents results of regressing the business activity measures, CommLoans and MBSNA, on V ega and
control variables. CommLoans is commercial and industrial loans divided by total loans, and MBSNA is non-agency
mortgage backed securities divided by total available-for-sale investments. The model is estimated using the control
function regression. 95% confidence intervals are reported in parentheses below the coefficient estimates. Continuous
variables are winsorized at the 1st and 99th percentiles.

(1) (2)

CommLoanst MBSNAt

V egat−1 1.999 1.31
[ 0.872, 3.107 ] [ 0.605, 2.021 ]

Deltat−1 -1.019 0.37
[ -2.11, 0.12 ] [ -0.376, 1.099 ]

Sizet−1 1.251 0.566
[ 0.595, 1.79 ] [ 0.09, 1.075 ]

BTMt−1 -1.961 0.413
[ -4.012, 0.067 ] [ -0.955, 1.83 ]

Capitalt−1 -2.454 -1.069
[ -30.064, 22.343 ] [ -21.244, 19.721 ]

Growtht−1 -2.985 2.902
[ -5.694, -0.401 ] [ 0.139, 6.228 ]

Constant 25.435 -3.942
[ 20.603, 30.238 ] [ -6.936, -0.453 ]

ρ -0.142 -0.214
[ -0.256, -0.011 ] [ -0.337, -0.089 ]

Obs 1339 1339
Year FE Yes Yes
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