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Abstract

Empirical studies demonstrate striking patterns in stock market returns in rela-

tion to scheduled macroeconomic announcements. First, a large proportion of the

total equity premium is realized on days with macroeconomic announcements,

despite the small number of such days. Second, the relation between market

betas and expected returns is far stronger on announcement days as compared

with non-announcement days. Third, risk as measured by volatilities and betas

is equal on both types of days. We present a model with rare events that jointly

explains these phenomena. In our model, which is solved in closed form, agents

learn about a latent disaster probability from scheduled announcements. We

quantitatively account for the empirical findings, along with other facts about

the market portfolio.
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1 Introduction

Since the work of Sharpe (1964) and Lintner (1965), the Capital Asset Pricing Model

(CAPM) has been the benchmark model of the cross-section of asset returns. While

generalizations have proliferated, the CAPM, with its simple and compelling structure

and tight empirical predictions, remains the major theoretical framework for under-

standing the relation between risk and return. Recently, Savor and Wilson (2014)

document a striking fact about the fit of the CAPM. Despite its poor performance in

explaining the cross section overall, the CAPM does quite well on a subset of trading

days, namely those days in which the Federal Open Market Committee (FOMC) or

the Bureau of Labor Statistics (BLS) releases macroeconomic news.

Figure 1 reproduces the main result of Savor and Wilson (2014) using updated

data. We sort stocks into portfolios based on market beta (the covariance with the

market divided by market variance) computed using rolling windows. We display the

relation between portfolio beta and expected returns on announcement days and non-

announcement days in the data. This relation is known as the security market line.

On non-announcement days (the majority), the slope is indistinguishable from zero.

That is, there appears to be no relation between beta and expected returns. This

result holds unconditionally, and is responsible for the widely-held view of the poor

performance of the CAPM. However, on announcement days, a strong positive relation

between betas and expected returns appears. Moreover, portfolios line up well against

the security market line, suggesting that the relation is not only strong, but that the

total explanatory power is high.

These findings closely relate to a recent empirical literature (Lucca and Moench,

2015; Savor and Wilson, 2013) demonstrating that market returns are much higher

on announcement days than non-announcement days. One potential explanation is

that risk is different on announcement and non-announcement days. However in the

data, variances and covariances on announcement days are nearly indistinguishable

from those on non-announcement days. This deepens the puzzle, ruling out a number

of possible explanations.

We can summarize the facts as follows:

1. The slope of the security market line is higher on announcement days than on non-

announcement days. The difference is economically and statistically significant.
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2. The security market line is essentially flat on non-announcement days.

3. The equity premium is much higher on announcement days as opposed to non-

announcement days

4. Volatilities and betas with respect to the market are the same on both types of

days.

In this paper, we build a frictionless model with rational investors that explains all

four findings. Our model is relatively simple and solved in closed form, allowing us to

clearly elucidate the elements of the theory that are necessary to explain these results.

Nonetheless, the model is quantitatively realistic, in that we explain not only these

findings above, but also the overall risk and return of the aggregate stock market.

One important aspect of our model is that, despite the lack of frictions, investors

do not have complete information. Macroeconomic announcements matter for stock

prices because they reveal information to investors. This only makes sense if investors

do not have full information in the first place.1 The information that is revealed

matters greatly to investors, which is why a premium is required to hold stocks on

announcement days. In our model, the information concerns the likelihood of economic

disaster similar to the Great Depression or what many countries suffered following the

2008 financial crisis. Constant relative risk aversion implies that such deep downturns

matter more to investors than what would be suggested purely on the basis of second

moments.

We further assume that stocks have differential exposure to macroeconomic risk. We

endogenously derive the exposure on stock returns from the exposure of the underlying

cash flows. We also assume, plausibly, that there is some variability in the probability

of disaster that is not revealed in the macroeconomic announcements. Stocks with

greater exposure have endogenously higher betas, both on announcement and non-

announcement days, than those with lower exposure. They have much higher returns,

in line with the data, on announcement days, because that is when a disproportionate

amount of information is revealed.

We find that the presence of rare events breaks the traditional relation between

1Another possibility is that macroeconomic announcements themselves create the risk perhaps
because they reflect on the competence of the Federal Reserve. We do not consider that possibility
here.
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risk and return. This is key, because findings 1–4 together show a dramatic failure of

the risk/return relation. In the model, risk appears to be the same on announcement

and non-announcement days because of the asymmetric nature of the rare event. Most

likely, investors will learn that the economy continues to be in good shape and the risk

of disaster remains low. There is a small probability, however, that they will learn that

the economy is in worse shape than believed.

While we focus on macroeconomic announcements, the tools we develop could be

used to address other types of periodic information revelation. There is a vast empir-

ical literature on announcement effects (La Porta et al., 1997; Fama, 1970), of which

the literature on macro-announcements is a part. There is, at present, scant theo-

retical work (Ai and Bansal (2017) is a recent exception). In this paper, we develop

a set of theoretical tools to handle the fact that announcements occur at determin-

istic intervals, and that a finite amount of information is released over a vanishingly

small period of time. Time just before and just after the announcement is connected

through intertemporal optimization conditions. We show that these conditions form a

set of boundary conditions for the dynamic evolution of prices in the interval between

announcements. It is this insight that allows us to solve the model in closed form.

The rest of the paper proceeds as follows. Section 2 discusses the model. Section 3

discusses the fit of the model to the data, and Section 4 concludes.

2 A model with announcement effects

2.1 Endowment and preferences

We assume an endowment economy with an infinitely-lived representative agent. Ag-

gregate consumption (the endowment) follows the stochastic process

dCt
Ct−

= µCdt+ σdBCt +
(
eZt − 1

)
dNt, (1)

where BCt is a standard Brownian motion and where Nt is a Poisson process. The

diffusion term µCdt + σdBCt represents the behavior of consumption during normal

times. The Poisson term
(
eZt − 1

)
dNt represents rare disasters. The random variable

Zt represents the effect of a disaster on log consumption growth. We assume, for
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tractability, that Zt has a time-invariant distribution, which we call ν; that is, Zt is

iid over time, and independent of all other shocks. We use the notation Eν to denote

expectations taken over ν.

We assume the representative agent has recursive utility with EIS equal to 1,

which gives us closed-form solutions up to ordinary differential equations. We use

the continuous-time characterization of Epstein and Zin (1989) derived by Duffie and

Epstein (1992). The following recursion characterizes utility Vt:

Vt = maxEt

∫ ∞
t

f(Cs, Vs)ds, (2)

where

f(Ct, Vt) = β(1− γ)Vt

(
logCt −

1

1− γ
log[(1− γ)Vt]

)
. (3)

Here β represents the rate of time preference, and γ represents relative risk aversion.

The case of γ = 1 collapses to time-additive (log) utility. When γ 6= 1, preferences

satisfy risk-sensitivity, the characteristic that Ai and Bansal (2017) show is a necessary

condition for a positive announcement premium.

2.2 Scheduled announcements and the disaster probability

We assume that scheduled announcements convey information about the probability

of a rare disaster (in what follows, we use the terminology probability and intensity

interchangeably). The probability may also vary over time for exogenous reasons; this

creates volatility in stock prices in periods that do not contain announcements.

To parsimoniously capture these features in the model, we assume the intensity of

Nt is a sum of two processes, λ1t and λ2t.
2 We assume investors observe λ2t, which

follows

dλ2t = −κ(λ2t − λ̄2)dt+ σλ
√
λ2tdBλt, (4)

with Bλt a Brownian motion independent of BCt. The process for λ2t is the same as

the one assumed for the disaster probability in Wachter (2013).

2Equivalently, decompose, Nt as
Nt = N1t +N2t,

where Njt, for j = 1, 2, has intensity λjt.
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The intensity λ1t follows a Markov switching process. Following Benzoni et al.

(2011), we assume two states, λG (good) and λB (bad), with 0 ≤ λG < λB, and

P (λ1,t+dt = λG|λ1t = λB) = ηBGdt

P (λ1,t+dt = λB|λ1t = λG) = ηGBdt.
(5)

If the economy is in a good state, the probability of a switch to the bad state over the

next instant is ηGB dt > 0. If the economy is in a bad state, the probability of a switch

to the good state is ηBGdt > 0.

The intensity λ1t is latent; investors learn about it from macroeconomic announce-

ments. Let pt denote the probability that the representative agent places on λ1t = λB.

Between announcements, we assume pt evolves according to

dpt = (−ptηBG + (1− pt)ηGB) dt = (−pt(ηGB + ηBG) + ηGB) dt. (6)

This assumption implies that the agent learns only from announcements.3 If the econ-

omy is in a good state, which it is with probability 1 − pt, the chance of a shift to

the bad state over the next instant is ηGB dt. If the economy is in a bad state, which

is with probability pt, the chance of a shift to the good state over the next instant is

ηBG dt. Define

λ̄1(pt) ≡ ptλ
B + (1− pt)λG,

as the agent’s posterior value of λ1t.

Announcements convey information about λ1t. For simplicity, we assume announce-

ments convey full information, that is, they perfectly reveal λ1t.
4 We refer to announce-

3Bayesian learning of pt implies

dpt = pt

(
λB − λ̄1(pt)

λ̄1(pt)

)
dN1t +

(
−p(λB − λ̄1(pt))− ptηBG + (1− pt)ηGB

)
dt (7)

(Liptser and Shiryaev, 2001). The first term multiplying N1t corresponds to the actual effect of
disasters. The term −p(λB− λ̄1(pt)) in the drift corresponds to the effect of no disasters. We abstract
from these effects in (7). Because disasters will be very unlikely, the term −p(λB − λ̄1(pt)) is small
(agents do not learn much from the fact that disasters do not occur). In what follows, we compare
the data to simulations that do not contain disasters. Therefore ignoring the Poisson term can be
understood as an implementation of realization utility, defined by Cogley and Sargent (2008). We
allow agents to learn from disasters; however, they do not forecast that they will learn from disasters.

4In effect, we assume the government body issuing the announcement has better information,
perhaps because of superior access to data. Stein and Sunderam (2017) model the strategic problem
of the announcer and investors, and show that announcements might reveal more information than a
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ments revealing λ1t to be λG as positive and those revealing it to be λB as negative.

The reason for this terminology is intuitive: an announcement revealing the disaster

probability to be low should be good news. The following sections make this intuition

precise.

Let T be the length of time between announcements.5 Define τ as the time elapsed

since the most recent announcement:

τ ≡ t mod T,

It is useful to keep track of the content of the most recent announcement, because of

the information it conveys about the evolution of the disaster probability. Let

p0t ≡ pt−τ . (8)

That is, p0t is the revealed probability of a bad state at the most recent announcement.

By definition, p0t ∈ {0, 1}. The process for pt is right-continuous with left limits. In

the instant just before the announcement it is governed by (6). On the announcement

itself, it jumps to 0 or 1 depending on the true (latent) value of λ1t.

Furthermore, we define

A ≡ {t : t mod T = 0} ,

N ≡ {t : t mod T 6= 0} .
(9)

That is, A is the set of announcement times, and N is the set of non-announcement

times. It is straightforward to show that N is an open set, and for functions defined

on N , derivatives are well-defined.

Under these assumptions, pt has an exact solution:

Lemma 1. Between announcements, the probability assigned to the bad state satisfies

pt = p(τ ; p0t), where

p(τ ; p0t) = p0te
−(ηBG+ηGB)τ +

ηGB
ηBG + ηGB

(1− e−(ηBG+ηGB)τ ). (10)

naive interpretation would suggest.
5In the data, announcements are periodic, but, depending on the type of announcement, the

period length is not precisely the same. Our assumption of an equal period length is a convenient
simplification that has little effect on our results.
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Proof. Equation 6 implies that pt is deterministic between announcements. More-

over, pt is memoryless in that it contains no information prior to the most recent

announcement. Because the information revealed at the most recent announcement is

summarized in p0, any solution for (6) takes the form pt = p(τ ; p0t), where τ = t mod T

and p0t ∈ {0, 1}. It follows directly from (6) that p(τ ; p0t) satisfies

d

dτ
p(τ ; p0) = −p(τ ; p0)(ηBG + ηGB) + ηGB, τ ∈ [0, T ). (11)

This has a general solution:

p(τ ; p0) = Kp0e
−(ηBG+ηGB)t +

ηGB
ηBG + ηGB

, (12)

where Kp0 is a constant that depends on p0. The boundary condition

p(0; p0) = p0

pins down the constant Kp0 , implying (10).

Equation 10 shows that pt is a weighted average of two probabilities. The first, p0t,

is the probability of the bad state, revealed in the most recent announcement. The

second, ηGB
ηGB+ηBG

, is the unconditional probability of the bad state. As τ , the time

elapsed since the announcement, goes from 0 to 1, the agent’s weight shifts from the

former of these probabilities to the latter.

Agents forecast the outcome of the announcement based on pt. As we will see,

intertemporal optimality conditions connecting the instant before the announcement

to the announcement itself are crucial determinants of equilibrium. It is thus useful to

define notation for pt just before the announcement. Let

pG = lim
τ→T

p(τ ; 0)

pB = lim
τ→T

p(τ ; 1).
(13)

Then pG is the probability that the agent assigns to a negative announcement just

before the announcement is realized, if the previous announcement was positive. If

the previous announcement was negative, then the agent assigns probability pB. The

values of pG and pB, which are strictly between 0 and 1, follow from (10).
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2.3 The state-price density

We will value claims to future cash flows using the state-price density πt. This object

is uniquely determined by the utility function and by the process for the endowment.

Heuristically, we can think of πt as the process for marginal utility.

Theorem 1. For t ∈ N , the evolution of the state price density πt is characterized by

dπt
πt−

= −(rt +
(
λ̄1(pt) + λ2t

)
Eν
[
e−γZt − 1

]
)dt

− γσdBCt + (1− γ)bλσλ
√
λ2tdBλt + [e−γZt − 1]dNt, (14)

where rt is the riskless interest rate, and where

bλ =
1

(1− γ)σ2
λ

(
β + κ−

√
(β + κ)2 − 2σ2

λ[Eνe
(1−γ)Zt − 1]

)
.

Proof. See Appendix A.

The instantaneous mean growth rate of the state-price density is (as usual) the

riskfree rate rt (to be characterized below). The state-price density jumps upward in

the case of a disaster, corresponding to the effect of a large decline in consumption on

marginal utility. The state-price density also changes due to normal-time changes in

consumption (this term will be small), and because of changes in the disaster probabil-

ity not associated with announcements (1−γ)bλσλ
√
λ2tdBλt. When γ > 1, (1−γ)bλ is

positive and so marginal utility rises when the disaster probability rises. When γ < 1,

marginal utility falls.6

Comparing Theorem 1 to analogous results in prior studies (see Tsai and Wachter

(2015) for a survey), shows that there is no special role for announcements in the dy-

namics of the state-price density outside of announcement periods. Announcements en-

ter only indirectly, through the posterior probability of the Poisson shock dNt, through

the compensation in the drift, and in the riskfree rate, given in the theorem below.

This is intuitive, given that announcements occur at pre-determined intervals. The

announcement cycle does affect the level of the value function, but, because it is de-

terministic, it does not affect marginal utilities along the optimal consumption path.

6In a more general model, whether marginal utility falls or rises depends on γ relative to the
inverse of the elasticity of intertemporal substitution. See Tsai and Wachter (2017).
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Announcements also affect the riskfree rate indirectly through the agent’s posterior

probability λ̄1(pt). The higher this posterior probability, the lower the riskfree rate,

due both to precautionary savings and a lower expected growth rate. However, there

is no direct effect of announcements.7

Theorem 2. The riskfree rate rt is given by

rt = β + µC − γσ2 +
(
λ̄1(pt) + λ2t

)
Eν
[
e−γZt(eZt − 1)

]
. (15)

Proof. See Appendix A.

Announcements, however, do have a direct effect on state-price density, on the day

of the announcement itself. The following theorem characterizes the change in the

state-price density due to announcements.

Theorem 3 (Announcement SDF). For t ∈ A, with probability 1,

πt
πt−

=

(
exp{ζp0t + bppt}

exp{eβT ζp0t− + bppt−}

)1−γ

(16)

where

bp =
(λB − λG)Eν

[
e(1−γ)Zt − 1

]
(1− γ)(β + ηGB + ηBG)

, (17)

and where ζp0t, ζp0t− ∈ {ζ0, ζ1} with

e(1−γ)(ζ0eβT+bppG) = pGe(1−γ)(ζ1+bp) + (1− pG)e(1−γ)ζ0

e(1−γ)(ζ1eβT+bppB) = pBe(1−γ)(ζ1+bp) + (1− pB)e(1−γ)ζ0 .
(18)

Proof. See Appendix A.

The difference ratio of state-price densities just prior to and just after an announce-

ment in (16) will play an important role in what follows. This ratio can be thought of

as an announcement stochastic discount factor (SDF), and it will determine the risk

premium for macroeconomic announcements.

7While our model implies that the riskfree rate looks no different on announcement and non-
announcement days, bonds of finite maturity would go up in price on announcement days, consistent
with the empirical results of Savor and Wilson (2013).
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Equation 16 shows that this stochastic discount factor is a function of p0t just before

and just after the announcement and pt just before and just after the announcement.8

Note that p0t ∈ {0, 1} and pt just prior to an announcement is in {pG, pB}. It follows

(see Appendix A for details) that (18) is simply the condition that over an infinitesimal

interval, the expectation of the SDF must equal 1.

Equation 16 holds “only” with probability 1. That is, there is a theoretical possi-

bility that a disaster could coincide with an announcement. Because announcements

are a set of measure zero the probability that a disaster and announcement coincide is

zero, and so we can ignore the theoretical possibility when calculating expectations.

The stochastic discount factor has two components, one corresponding to a change

in the announcement content (ζp0t) and the other corresponding to the posterior prob-

ability of a disaster. That the posterior probability should affect the SDF is intuitive.

It follows from λB > λG that bp < 0. Thus for γ > 1, an increase in the posterior

probability of being in a bad state increases marginal utility. Moreover, the increase

in marginal utility is higher, the greater is the persistence of the probability (namely,

the lower ηGB + ηBG), and the lower the discount factor β. In the numerator of this

term is the instantaneous effect of a disaster on utility, multiplied by the incremental

probability of disaster from being in a bad state.

However, the change in the state-price density is not only due to the change in

the posterior probability. There is also an effect of the announcement itself. On the

announcement, the state variable p0t, representing the posterior on the most recent

announcement, also jumps. Recall that this variable can either be 0 or 1, because

the announcement perfectly reveals the state. The effect is thus characterized by

a binary variable ζp0t , whose two values satisfy the system (18). When the agent

receives news about λ1t on the announcement, she changes her pt, and incorporates

the future predictable changes in pt into the SDF (this is why mean reversion enters in

Equation 17). The agent also incorporates forecasts of future announcements through

(18).

To summarize, though the announcement is instantaneous, Theorem 3 shows that

a finite amount of news is revealed, namely that πt undergoes a discrete change. This

is what will produce a macroeconomic announcement premium in our model.

Given the interpretation of (18) as the announcement SDF, we would expect the

8Of course, pt is itself a function of p0t and the time since the last announcement.
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change in the SDF to reflect our intuition about agent’s marginal utilities. In fact it

does, as the next theorem shows. The following technical result is helpful.

Lemma 2. Let ζ0, ζ1, and bp be defined as in Theorem 3. Then bp < 0 and

ζ0 > ζ1 + bp. (19)

Proof. See Appendix A.

Corollary 1. For γ > 1, the state-price density falls when the announcement is positive

and rises when the announcement is negative.

For γ < 1, the state-price density falls when the announcement is negative and rises

when it is positive.

Proof. It follows from Lemma 1 that pG, pB ∈ (0, 1). Then e(1−γ)(ζ0eβT+bppG) in (18) is

a weighted average of two terms, e(1−γ)(ζ1+bp) and e(1−γ)ζ0 with weights strictly between

0 and 1. Similarly, e(1−γ)(ζ1eβT+bppB) in (18) is a weighted average of the same two

terms, e(1−γ)(ζ1+bp) and e(1−γ)ζ0 , again with weights strictly between 0 and 1.

Assume that γ > 1. It follows from Lemma 2 that

e(1−γ)(ζ1+bp) > e(1−γ)ζ0

Thus, applying (18), we find

e(1−γ)(ζ0eβT+bppG) > e(1−γ)ζ0 ,

and thus (
eζ0

eζ0eβT+bppG

)1−γ

< 1

The left hand side is πt/πt− if the announcement is positive and the previous announce-

ment was also positive. It is also true that

e(1−γ)(ζ1eβT+bppB) > e(1−γ)ζ0 .

Thus (
eζ0

eζ1eβT+bppB

)1−γ

< 1
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The left hand side is πt/πt− if the announcement is positive and the previous announce-

ment was negative. Regardless of what went before, the state-price density falls when

the announcement is positive.

We use the same method to show that, when the announcement is negative, the

state-price density rises. It follows from (18) and Lemma 2 that

e(1−γ)(ζ0eβT+bppG) < e(1−γ)(ζ1+bp)

so that (
eζ1+bp

eζ0eβT+bppG

)1−γ

> 1

The left hand side is πt/πt− when the announcement is negative and the previous

announcement was positive. It also follows from (18) and Lemma 2 that

e(1−γ)(ζ1eβT+bppB) < e(1−γ)(ζ1+bp)

so that (
eζ1+bp

eζ1eβT+bppB

)1−γ

> 1

Thus, regardless of what went before, the state-price density rises when the announce-

ment is negative. The proof for γ < 1 follows similarly.

2.4 Equity prices

We consider a cross-section of dividend claims which differ in their sensitivity to dis-

asters. For parsimony, we assume the claims are identical in all other respects. Let Dj
t

equal the time-t dividend of claim j, for j = 1, . . . , J . Assume

dDj
t

Dj
t−

= µDdt+ σdBCt + (eφjZt − 1)dNt. (20)

The parameter φj determines the sensitivity of the claim to disasters. If we let F j
t

denote the price of such a claim, no-arbitrage implies

F j
t = Et

∫ ∞
t

πs
πt
Dj
s ds (21)
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Our model implies an analytical expression for (21) that, not surprisingly given the

form of (21), takes the form of an integral over s. The expressions in this integral

are equity strips, namely claims to a dividend payment at a single point in time.9 To

simplify the problem, we first give an analytical solution for these equity strips. We

use superscript j to denote quantities that depend on φj and thus are asset specific.

Theorem 4. Consider a claim to a dividend Ds+t, where the process for Dt solves

(20). Let Hj(Dt, pt, λ2t, τ, s; p0t) denote the time-t price of this claim. That is,

Hj(Dj
t , pt, λ2t, τ ; p0t) = Et

[
πt+s
πt

Dj
t+s

]
. (22)

Then

Hj(Dt, pt, λ2t, τ, s; p0t) = Dt exp
{
ajφ
(
τ, s; p0t

)
+ bjφp(s)pt + bjφλ(s)λ2t

}
(23)

where

bjφp(s) =
(λB − λG)Eν

[
e(φj−γ)Zt − e(1−γ)Zt

]
ηBG + ηGB

(
1− e−(ηBG+ηGB)s

)
, s ≥ 0, (24)

where bjφλ(s) solves

dbjφλ(s)

ds
=

1

2
σ2
λb
j
φλ(s)

2 +
(
(1− γ)bλσ

2
λ − κ

)
bjφλ(s) + Eν

[
e(φj−γ)Zt − e(1−γ)Zt

]
, (25)

with boundary condition bjφλ(0) = 0. Define the function ajφ such that

ajφ
(
τ, s; p0t

)
= hj

(
τ + s; p0t

)
+∫ s

0

(
−β − µC + µD + λGEν

[
e(φj−γ)Zt − e(1−γ)Zt

]
+ κλ̄2b

j
φλ(u)

)
du (26)

for τ ∈ [0, T ), s ≥ 0, p0t ∈ {0, 1}. The function hj uniquely solves

eh
j(u;p0t− )+bjφp(u−T )pt− = Et−

[
e(1−γ)(ζp0t+bppt)

e(1−γ)(eβT ζp
0t−

+bppt− )
eh

j(u−T ;p0t)+b
j
φp(u−T )pt

]
, (27)

for u ≥ T and hj
(
u; ·
)

= 0 for u ∈ [0, T ).

9See Lettau and Wachter (2007).
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Proof. See Appendix B.

The price of a claim to a future dividend depends on the current dividend, the val-

ues of the state variables, the time since the last announcement, and the maturity s.10

Note that bjφp(s) < 0 as long as φj > 1, implying that an increase in the probability of

a bad state implies a decrease in the price of the asset. This intuitive result reflects a

tradeoff between a riskfree rate effect on the one hand and a risk premium and cash flow

effect on the other. An increase in pt lowers the riskfree rate as shown in (15). This ef-

fect alone increases the prices of all future claims. However, there is an opposing effect

due to the increased risk premium, and lower expected growth rate. When φj > 1, the

opposing effect dominates.11 The magnitude of the response depends on the maturity

of the equity strip: the longer the maturity, the greater the response. As the matu-

rity increases to infinity, the response asymptotes to
(λB−λG)Eν[e(φj−γ)Zt−e(1−γ)Zt ]

ηBG+ηGB
, where

Eν
[
e(φj−γ)Zt − e(1−γ)Zt

]
is the response of short-term equity (per unit of maturity) for

a disaster, and λB −λG is the difference in the disaster probability. Finally, ηBG + ηGB

reflects the persistence of the disaster probability.12

The direct effect of announcements on prices is captured in the term hj(τ + s; p0t).

For very short-term equity maturing before the next announcement, announcements are

not relevant and hj = 0. With this as boundary condition (27), iteratively determines

the value of hj when an announcement lies between time t and maturity at t+ s. The

recursion is, in effect, on the number of remaining announcements. Equation 27 is the

Euler equation at the instant of the announcement (note that inside the expectation

is the announcement SDF from Theorem 3).

The value of the firm incorporates forecasts of future pt. Like marginal utility

(Theorem 3), this effect appears in two different terms, capturing both the linear

evolution and the potential for large nonlinear changes. The first term bjφp(s), captures

the fact that, following a jump in pt on the announcement, pt mean-reverts following

a linear process. The second term, captured by the function hj reflects the change in

forecasts of the content of future announcements.

10Note that it is not necessary to use a superscript for Dt in (23) as this formula is valid for any
Dt > 0.

11Note that the EIS is equal to unity. In a model with time-additive utility, the requirement is that
φj > γ, relative risk aversion, which is much stronger. For non-unitary EIS and recursive utility, the
result is more complicated. See Tsai and Wachter (2017).

12The term bjφλ(s) is the same as that in Wachter (2013); see that paper for discussion and the
closed-form solution.
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Corollary 2 shows that the price of the continuous stream of dividends is equal to

an integral of the prices of equity strips.

Corollary 2. Let F j
t be the time-t price of an asset paying the dividend process (20)

with leverage parameter φj. Then

F j
(
Dt, pt, λ2t, τ ; p0t

)
=

∫ ∞
0

Hj(Dt, pt, λ2t, τ, s; p0t

)
ds, (28)

where Hj is given by (23).

Proof. The result follows directly from Theorem 4 and the no-arbitrage condition

(21).

Using the characterization of the equity price in Theorem 2, we can sign the response

to the announcement.

Corollary 3. Assume that φj > 1. Then F j
(
Dt, pt, λ2t, τ ; p0t

)
increases when the

announcement is positive and decreases when the announcement is negative.

Proof. By (28), it suffices to show the result for equity strips Hj. This is shown in

Appendix B.

2.5 Risk premia

We first consider the risk premium outside of announcement periods. Let rjt denote the

expected return on asset j per unit dt of time (rjt is defined formally in Appendix B).

For t such that t mod T 6= 0, the instantaneous risk premium is given in the following

theorem:

Theorem 5. Consider t such that t mod T 6= 0. Then the instantaneous risk premium

for an equity asset defined in section 2.4 is given by

rjt−rt = γσ2−λ2t(1−γ)bλ
1

F j
t

∂F j
t

∂λ2t

σ2
λ−
(
λ̄1(pt) + λ2t

)
Eν
[(
e−γZt − 1

)(
eφjZt − 1

)]
. (29)

The theorem divides the premium into three components: the first is the standard

consumption CAPM term (negligible in our calibration). The second term is the pre-

mium investors require for baring the risk of facing risk in λ2t. Provided that the price
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falls when λ2t rises, this is positive for γ > 1. See the discussion following Theorem 1

for further detail. The third term is the premium directly linked to the rare disasters.

Note that the probability of the disaster outcome is the agent’s posterior probability,

λ̄1(pt) +λ2t. The disaster premium is positive provided that agents are risk averse and

that asset has positive exposure to disasters φj > 0.

We now consider the risk premium on announcement dates. On non-announcement

dates, the risk premium earned on the asset is equal to (rjt −rt) dt. Therefore the usual

continuous-time result holds: the risk premium approaches zero for sufficiently small

time periods. This is not true for announcements dates.

Intuitively, the announcement premium should be given by the covariance of returns

with the stochastic discount factor. The following theorem makes this precise.

Theorem 6. For assets defined in Theorem 2, the announcement premium is given by

Et−

[
F j
t − F

j
t−

F j
t−

]
= −Et−

[(
πt − πt−
πt−

)(
F j
t − F

j
t−

F j
t−

)]

for t mod T = 0.

Proof. Algebra implies that

Et−

[(
πt − πt−
πt−

)(
F j
t − F

j
t−

F j
t−

)]
= Et−

[
πt
πt−

F j
t

F j
t−

− F j
t

F j
t−

−
(
πt
πt−
− 1

)]

By the characterization of F j in (21),

πt−F
j
t− = Et−

[
πtF

j
t

]
Furthermore,

πt− = Et− [πt]

(see Appendix A). The result follows.

Corollary 4. Consider an asset with leverage parameter φ > 1. The announcement

premium is positive if γ > 1 and negative if γ < 1.

Proof. Corollaries 1 and 3 show that changes in F and in π upon announcements have

opposite signs when γ > 1 and the same sign when γ < 1. The result follows.
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3 Quantitative results

We start by replicating the evidence of Savor and Wilson (2014) in an extended sam-

ple. Section 3.1 describes the data and Section 3.2 the empirical findings. We then

simulate repeated samples from the model described in the previous section. Sec-

tion 3.3 describes the calibration of our model and Section 3.4, the simulation results.

Section 3.5 discusses the model’s mechanism.

3.1 Data

We obtain daily stock returns from the Center for Research in Security Prices (CRSP)

for individual stocks traded on NYSE, AMEX, NASDAQ and ARCA from January

1961 to September 2016. In addition, we also use the daily market excess returns

and risk-free rate provided by Kenneth French. The scheduled announcement dates

before 2010 are provided by Savor and Wilson (2014). Following their approach, we add

target-rate announcements of the FOMC and inflation and employment announcements

of the BLS for the remaining dates.

We define the daily excess return to be the daily (level) return of a stock in excess of

the daily return on the 1-month Treasury bill. We estimate covariances on individual

stock returns with the market return using daily data and 12-month rolling windows.

We include stocks which are available for trading on 90% or more of the trading days.

At the start of each trading month, we sort stocks by estimated betas, and create

deciles. We then form value-weighted portfolios of the stocks in each deciles, and

compute daily excess returns.

3.2 Empirical findings

Table 1 presents summary statistics on the ten beta-sorted portfolios. For each portfolio

j, j = 1, . . . , 10, we use the notation E[RXj] to denote the mean excess return, σj the

volatility of the excess return, and βj the covariance with the value-weighted market

portfolio divided by the variance of the market portfolio. Table 1 shows statistics for

daily returns computed over the full sample, over announcement days, and over non-
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announcement days.13 There is a weak positive relation between full-sample returns

and market betas. On non-announcement days, there is virtually no relation between

betas and expected returns. However, on announcement days, there is a strong relation

between beta and expected returns.

Comparing results for the two types of days in Table 1 also shows that average

returns on announcement days are much higher than on non-announcement days, often

by a full order of magnitude. Yet the standard deviation and the betas computed over

announcement days and non-announcement days are almost exactly the same.

Figure 1 shows average daily excess returns in each of the ten portfolios, plot-

ted against the betas on the portfolios for announcement days (diamonds) and non-

announcement days (squares). Also shown is the fitted line on both days. This relation,

known as the security market line, is strongly upward-sloping on announcement days,

but virtually flat on non-announcement days.

3.3 Calibration

We now describe the calibration of the model in Section 2. We choose preference

parameters and normal-times consumption parameters to be the same as in Wachter

(2013). We also choose the same values for the mean reversion of the λ2-process (κ) and

the volatility parameter of this process, σλ. For simplicity, we assume that, when the

economy is in the good state, the intensity λ1t is zero, that is λG = 0. We choose φGB so

that the bad state of the economy is a rare event, and φBG so that it is persistent. The

unconditional probability of the bad state in our calibration is φGB/(φGB+φBG) = 13%.

We then choose λ̄2 and λB with the restriction that the average disaster probability

is 3.6%, as in Barro and Ursúa (2008). The values λ̄2 = 2.8% and λB = 5.4% satisfy

that restriction. The disaster distribution is taken to be multinomial, as measured in

the data by Barro and Ursua. See Wachter (2013) for further detail.

We choose the disaster sensitivity φj to be uniformly distributed between 1.5 and

7. For simplicity, we assume that during normal times firm dividends grow at the same

rate as each other and at the same rate as consumption µD = µC . Table 2 reports

13Betas and volatilities are computed in the standard way, as central second moments. An
announcement-day volatility therefore is computed as the mean squared difference between the an-
nouncement return and the mean announcement return. Announcement-day betas are computed
analogously.
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parameter choices.

3.4 Simulation

To evaluate the fit of the model, we simulate 500 artificial histories, each of length 50

years (240 × 50 days). We assume that announcements occur every 10 trading days.

For each history, we simulate a burn-in period, so that we start the history from a

draw from the stationary distribution of the state variables. We simulate the model

using the true (as opposed to the investor’s) distribution. When we report statistics,

we consider sample paths where the economy remains in a good state (λ1t = λG) and

where there are no disasters. This is reasonable given that both the bad state of the

economy, and a disaster, are rare events. By taking a stand on the type of events that

have been observed over the short sample available to us, we considerably narrow the

standard errors for the model.14

While time is continuous in our analytical model, it is necessarily discrete in our

simulations. We simulate the model at a daily frequency to match the frequency of

the data. We compute end-of-day prices, and assume the announcement occurs in the

middle of a trading day.

Given a series of state variables and of shocks, we compute returns as follows. For

each asset j, define the price-dividend ratio Gj
t = F j

t /D
j
t . From (28), it follows that

Gj
t is a function of the state variables alone. We approximate the daily return as

Rj
t,t+∆t ≈

F j
t+∆t +Dj

t+∆t∆t

F j
t

=
Dj
t+∆tG

j
t+∆t +Dj

t+∆t∆t

Dj
tG

j
t

=
Dj
t+∆t

Dj
t

Gj
t+∆t + ∆t

Gj
t

≈ exp

{
µ̄D∆t− 1

2
σ2∆t+ σ(BC,t+∆t −BC,t)

}
Gj
t+∆t + ∆t

Gj
t

,

(30)

where ∆t = 1/240. The last line follows because we consider sample paths with no

14Academic research also contains an element of bias in that, had we a truly unbiased sample, we
might not think of the resulting effect as an anomaly.
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disasters. The risk free rate is approximated by

Rft = exp(rt∆t). (31)

The daily excess return of asset k is then

RXj
t,t+∆t = Rj

t,t+∆t −Rft. (32)

We define the value-weighted market return just as in the data, namely we take a

value-weighted portfolio of returns. We assume that the assets have the same value

at the beginning of the sample. Because the assets all have the same loading on the

Brownian shock and the same drift, and conditional on a history not containing rare

events, the model implies a stationary distribution of portfolio weights. Given a time

series of excess returns on firms (which, because we have no idiosyncratic risk, we

take as analogous to portfolios), and a time series of excess returns on the market, we

compute statistics exactly as in the data.

Figure 2 displays our main result. We overlay the simulated statistics on the em-

pirical statistics from Figure 1. Each dot on the figure represents a statistic for one

firm, for one simulated sample. Blue dots show pairs of average excess returns and

betas on announcement days, while grey dots show pairs on non-announcement days.

There is a clear separation between the two types of days, with the announcement-day

statistics lining up on the announcement security market line in the data. The non-

announcement-day statistics coincide with those statistics on the non-announcement

days in the data. That is, the model captures the qualitative and quantitative effect

of announcement days on the security market line.

Figure 3 further clarifies the relation between the announcement and non-announcement

days in the model by showing interquartile ranges. There is a clear separation between

announcement and non-announcement days, and essentially a zero probability, accord-

ing to the model, that the differences in security market lines could arise by chance.

A natural explanation for why risk premia are greater on announcements versus

non-announcement days is that the risk is different. Table 1 shows, strikingly, that this

is not true in the data. Betas computed on announcement days are virtually identical

to those on non-announcement days. To be consistent with the data, a model must

necessarily not only explain the difference in expected returns, but also the difference
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in betas.

The mechanism that we propose meets this requirement. Table 3 reports betas in

the model from the two types of days. As in the data, they are indistinguishable. This

may be surprising given that risk premia are clearly higher on announcement days. The

reason, which we describe in more detail in the discussion section that follows, is that

rare events imply that the beta is not a good proxy for the true risk of the portfolio.

In most samples, one will observe very little extra variation on announcement days,

because the news confirms expectations. Investors factor in the tail event of a negative

announcement, but it need not occur.

Table 4 shows the regression slope in the data on announcement and non-announcement

days, the median values from simulations in the model, and the 90% confidence inter-

vals. We run the regression

Ê[RXj
t | t ∈ i] = δiβ

j
i + error, (33)

where i = a (announcement days) or n (non-announcement days). These slopes can be

understood as measures of the daily market risk premia on the two types of days. In

the data the slope is 10 basis points on announcements, and only 1 basis point on non-

announcement days. The model implies nearly identical results, with tight confidence

intervals.

In addition, we also compute the summary statistics of the market portfolio, and

the results are shown in Table 5. The important feature here is that the volatility of

the market portfolio is the same on two different type of days, while the mean excess

returns appear to be quite different. This table shows that the model can capture the

first and second moment of the aggregate market on the two types of days, as well as

of the cross-section.

3.5 Discussion

The previous subsection demonstrates that the model accounts for the three main

findings described in the introduction. How is it that the model can account for these

findings?

In the model, announcements convey important news about the distribution of
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future outcomes in the economy. On that day, it is possible that a bad state of the

economy could be revealed. If the bad state is realized, not only will asset values be

affected, but the marginal utility of economic agents will rise. Thus investors require

a premium to hold assets over the risky announcement period.

In our model, some assets have cash flows that are more sensitive to others. The

sensitivity parameter φj, while not the same as the beta, is closely related. Assets

with high φj have a greater dividend response to disasters. Their prices thus move

more with changes in the disaster probability, and in particular with λ1t and λ2t. The

value-weighted market portfolio of course also moves with the disaster probability, and

thus the higher is φj (over the relevant range), the higher is the return beta with the

market, both on non-announcement days (which reveal information about λ2t, and on

announcement days, which reveal additional information about λ1t.

Thus the model predicts a relation between risk and return on both announcement

and non-announcement days, but because the risk is so much greater on announcement

days, the premium, and therefore the spread in expected returns between low and high-

sensitivity assets, will also be much greater.

While this reasoning explains why the model accounts for facts 1–3 in the introduc-

tion, it does not explain how the model accounts for fact 4. That is, one might expect

that the volatility would be greater on announcement days than on non-announcement

days. After all, more information is revealed on those days. Moreover, one would

expect higher betas on those days. In the data, volatilities and betas are quite clearly

the same on both types of days. It is surprising that it is also a property of the model.

The model breaks the link between risk and return through rare events. The lack

of volatility in the model is a Peso problem: namely, the economy has been in a good

state of the world, and thus positive announcements have been observed. The true pop-

ulation volatility on announcement days is indeed higher than on non-announcement

days, but we do not observe this true population volatility. Another way to phrase this

is that, if we assume no rare events, true volatility is easy to measure and is tightly

captured by the second central moment over short samples. If there are rare events,

true volatility is difficult to measure.

As this discussion suggests, there is also a Peso problem in the observation of

the mean; namely the observed excess return need not be the true excess return.

Even though means are hard to estimate, though, this bias is much smaller than the
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effect on the volatility (by definition, rare events have a large effect on higher-order

moments). The majority of the observed premium reflects the fact that announcement

days are, in fact, riskier. That is, most of the observed premium reflects the higher

population risk premium on announcement days. To summarize, the investor’s first-

order condition necessarily imposes a link between risk and return. However, the data

does not necessarily capture that risk and return.

4 Conclusion

This paper builds a model that explains a strong relation between expected returns

and betas on announcement days, but a weak relation on other days. The model

simultaneously explains this finding, the high expected return on announcement days,

and the fact that measured risk is the same on both types of days.

The mechanism by which the model can explain these facts is one of rare events.

We model announcement days as days when news about a latent state is revealed.

This news concerns the probability of economic disaster. Most of the time, the news

is that the economy is in a good state. The possibility that the news reveals a bad

state is what produces the announcement premium. We prove that the model has the

qualitative properties found in the data, and we also show, via simulations, that it can

quantitatively explain the data.

While our focus in this paper is on macro-announcements, our the methodology

can be applied to scheduled announcements more generally, and understanding the

rich array of empirical facts that the announcement literature has uncovered.
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A Solving the representative agent’s value function

For a process Xt, define J̄ (Xt) as follows:

J̄ (Xt) = Eν [Xt −Xt− |dNt = 1]. (A.1)

Furthermore, define the vector Brownian motion dBt = [dBCt, dBλt]
>.

A.1 Continuation Value

Lemma A.1. In equilibrium, the representative agent’s continuation value equals

J(Ct, pt, λ2t, τ ; p0t) =
1

1− γ
C1−γ
t I(pt, λ2t, τ ; p0t)

1−γ, (A.2)

with

I(pt, λ2t, τ ; p0t) = exp{a
(
τ ; p0t

)
+ bppt + bλλ2t}, (A.3)

and

bp =
(λB − λG)Eν

[
e(1−γ)Zt − 1

]
(1− γ)(β + ηGB + ηBG)

,

bλ =
1

(1− γ)σ2
λ

(
β + κ−

√
(β + κ)2 − 2σ2

λ[Eνe
(1−γ)Zt − 1]

)
,

for pt ∈ [0, 1], λ2t ∈ [0,∞), τ ∈ [0, T ), p0t ∈ {0, 1} and where a defined as

a
(
τ ; p0t

)
= ζp0te

βτ +

1

β

(
µC −

1

2
γσ2 + bpηGB + bλκλ̄2 +

λG

1− γ
[
Eνe

(1−γ)Zt − 1
])

. (A.4)

The constant terms ζ0 and ζ1 solve

e(1−γ)(ζ0eβT+bppG) = pGe(1−γ)(ζ1+bp) + (1− pG)e(1−γ)ζ0

e(1−γ)(ζ1eβT+bppB) = pBe(1−γ)(ζ1+bp) + (1− pB)e(1−γ)ζ0 ,
(A.5)

with pG and pB defined by (13).

Proof. Conjecture that the continuation value Vt is a function J(Ct, pt, λ2t, τ ; p0t),

24



where τ = t mod T . Note that p0t is a discrete variable that changes only upon

announcements. For t ∈ N , the Hamilton-Jacobi-Bellman equation applies and

f(Ct, Jt) +
∂J

∂τ
+
∂J

∂C
CtµC +

∂J

∂p
[−pt(ηGB + ηBG) + ηGB]− ∂J

∂λ
κ(λ2t − λ̄2)

+
1

2

∂2J

∂C2
C2
t σ

2 +
1

2

∂2J

∂λ2
λ2tσ

2
λ

+
(
ptλ

B + (1− pt)λG + λ2t

)
J̄
(
J(Ct, pt, λ2t, τ ; p0t−)

)
= 0. (A.6)

Conjecture a solution to (A.6) of the form

J(Ct, pt, λ2t, τ ; p0t−) =
1

1− γ
C1−γ
t I(pt, , λ2t, τ ; p0t)

1−γ, (A.7)

where

I(pt, λ2t, τ ; p0t) = ea(τ ;p0t)+bpp+bλλ2t . (A.8)

Equation A.8 implies

J̄
(
J(Ct, pt, λ2t, τ ; p0t)

)
J(Ct− , pt− , λ2t− , τ−; p0t−)

= Eν
[
e(1−γ)Zt − 1

]
. (A.9)

Substituting (A.7) into (A.6) and dividing both sides by J , we obtain

− β(1− γ)
[
a
(
τ ; p0t

)
+ bppt + bλλ2t

]
+(1−γ)

da

dτ
(τ ; p0t)+(1−γ)µC+(1−γ)bp [−pt(ηGB + ηBG) + ηGB]−(1−γ)bλκ(λ2t− λ̄2)

− 1

2
γ(1− γ)σ2 +

1

2
(1− γ)2b2

λσ
2
λλ2t

+ pt(λ
B − λG)Eν

[
e(1−γ)Zt − 1

]
+ λGEν

[
e(1−γ)Zt − 1

]
+ λ2t

[
Eνe

(1−γ)Zt − 1
]

= 0.

(A.10)

Collecting coefficients on pt and on λ2t, we obtain

−β(1− γ)bp − (1− γ)bp(ηGB + ηBG) + (λB − λG)Eν
[
e(1−γ)Zt − 1

]
= 0

−β(1− γ)bλ − (1− γ)bλκ+
1

2
(1− γ)2b2

λσ
2
λ + Eν

[
e(1−γ)Zt − 1

]
= 0.

(A.11)

The equation for bp in the text follows.
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We also have the following quadratic function of bλ:

1

2
(1− γ)σ2

λb
2
λ − (β + κ)bλ +

1

1− γ
Eν
[
e(1−γ)Zt − 1

]
= 0, (A.12)

which has solution:15

bλ =
1

(1− γ)σ2
λ

(
β + κ−

√
(β + κ)2 − 2σ2

λEν [e(1−γ)Zt − 1]

)
. (A.13)

Finally we solve a
(
τ ; p0t

)
. Collecting constant terms gives the ODE

− β(1− γ)a (τ ; p0t) + (1− γ)
da

dτ
(τ ; p0t)

+ (1− γ)µC + (1− γ)bpηGB + (1− γ)bλκλ̄2−
1

2
γ(1− γ)σ2 + λGEν

[
e(1−γ)Zt − 1

]
= 0,

which is equivalent to

da

dτ
(τ ; p0t) = βa

(
τ ; p0t

)
−µC +

1

2
γσ2− bpηGB− bλκλ̄2−

λG

1− γ
Eν
[
e(1−γ)Zt − 1

]
. (A.14)

Equation A.14 implies a general form for a
(
τ ; p0t

)
:

a
(
τ ; p0t

)
=

ζp0te
βτ +

1

β

(
µC −

1

2
γσ2 + bpηGB + bλκλ̄+

λG

1− γ
Eν
[
e(1−γ)Zt − 1

])
, (A.15)

where ζp0t ∈ {ζ0, ζ1} for as yet undetermined coefficients ζ0 and ζ1.

To obtain ζ0 and ζ1, we require boundary conditions for (A.14). We obtain these

from the optimality condition at announcements. Along the optimal path, continuation

value must satisfy

Vt− = Et−

[∫ ∞
t

f(Cs, Vs)ds

]
= Et− [Vt].

(A.16)

Equation A.16 is trivial except on announcements. Upon announcements (t ∈ A),

(A.16) gives us the required boundary conditions. First note that, by definition of A
15See Tsai and Wachter (2015) for details about choosing the solution to bλ.
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and of τ ,

lim
τ→T

J(Ct− , pt− , λ2,t− , τ ; p0t−) = Et− [J(Ct, pt, λ2t, 0; p0t)] . (A.17)

Furthermore, because Ct and λ2t are continuous with probability 1,

lim
τ→T

J(Ct, pt− , λ2t, τ ; p0t−) = Et− [J(Ct, pt, λ2t, 0; p0t)] ,

Equation A.17, together with the form of I and Lemma 1, restricts a
(
τ ; p0t

)
.

Namely,

lim
τ→T

exp {(1− γ)(a(τ ; p0t−) + bppt−)} = Et− [exp {(1− γ)(a(0; p0t) + bppt}] ,

for t ∈ A. Cancelling out the constant term in a(·, ·) implies

exp
{

(1− γ)(ζp0t−e
βT + bppt−)

}
= Et− [exp {(1− γ)ζp0t + bppt}] , t ∈ A.

Immediately following the announcement pt = p0t ∈ {0, 1}. Therefore,

exp
{

(1− γ)(ζp0t−e
βT + bppt−)

}
= (1− pt−)e(1−γ)ζ0 + pt−e

(1−γ)ζ1+bp (A.18)

Applying (A.18) at p0t− = 0 and p0t− = 1 implies (A.5), uniquely determining ζ0 and

ζ1.

A.2 The state price density

Lemma A.2. The process πt is characterized by

πt = β exp

{∫ t

0

∂

∂V
f(Cs, Vs)ds

}
C−γt I(pt, λ2t, τ ; p0t)

1−γ, (A.19)

where I(pt, p0t, λ2t, τ) is defined by (A.3).

Proof. Duffie and Skiadas (1994) show that

πt = exp

{∫ t

0

∂

∂V
f(Cs, Vs)ds

}
∂

∂C
f(Ct, Vt). (A.20)
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The form of f implies

∂

∂C
f(Ct, Vt) = β(1− γ)

Vt
Ct

= β(1− γ)
(1− γ)−1(Ct)

1−γI(pt, λ2t, τ ; p0t)
1−γ

Ct

= βC−γt I(pt, λ2t, τ ; p0t)
1−γ.

(A.21)

Combining (A.20) and (A.21) implies

πt = β exp

{∫ t

0

∂

∂V
f(Cs, Vs)ds

}
C−γt I(pt, λ2t, τ ; p0t)

1−γ.

Proof of Theorem 1. For this proof, assume t ∈ N . Ito’s Lemma and Lemma A.2

imply
dπt
πt−

= µπt dt+ σπt dBt +
πt − πt−
πt−

dNt, (A.22)

for a scalar process µπt and a 1 × 2 vector process σπt.
16 It follows from (A.20) and

Ito’s Lemma that

σπt = [−γσ, (1− γ)bλσλ
√
λ2t], (A.23)

and that
πt − πt−
πt−

= e−γZt − 1, (A.24)

It follows from no-arbitrage that

Et−

[
dπt
πt−

]
= −rt−dt.

It then follows from the definition of an intensity that

Et−[dπt] = (µπtπt− +
(
λ̄1(pt) + λ2t

)
J̄ (πt)) dt,

implying

µπt = −rt −
(
λ̄1(pt) + λ2t

) J̄ (πt)

πt−
, (A.25)

16Lemma A.2 also implies the continuity of µπt and σπt on non-announcement dates. This allows
us to use t rather than t− to subscript these variables in (A.22) and elsewhere.
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where rt = rt− because µπt, λ2t are continuous and J̄ (πt)
πt−

is constant.

Proof of Theorem 2. Note that

∂

∂V
f(Ct, Vt) =

∂

∂V

(
β(1− γ)Vt logCt − βVt log[(1− γ)Vt]

)
= β(1− γ) logCt − β log[(1− γ)Vt]− β

= −β
{

1 + (1− γ)[a
(
τ ; p0t

)
+ bpp+ bλλ2t]

}
.

(A.26)

It follows from (A.19) and Ito’s Lemma that

µπt =

{
−β
[
1 + (1− γ)a

(
τ ; p0t

)
+ (1− γ)bppt + (1− γ)bλλ2t

]
+ (1− γ)

∂a

∂τ

}
dt

− γµCdt+ (1− γ)bp [−ptηBG + (1− p)ηGB] dt− (1− γ)bλκ(λ2t − λ̄2)dt

+
1

2
γ(γ + 1)σ2dt+

1

2
(1− γ)2b2

λσ
2
λλ2tdt.

Collecting terms and applying the equations for a
(
τ ; p0t

)
, bp and bλ yields

µπt = −
(
β + µC − γσ2 +

(
λ̄1(pt) + λ2t

) [
Eνe

(1−γ)Zt − 1
])
dt.

The result then follows from (A.25).

Proof of Theorem 3. Consider t ∈ A, namely announcement times. With probabil-

ity 1, a disaster does not coincide with an announcement. Therefore, it follows from

(A.19) that

πt
πt−

= lim
τ→T

I(pt, λ2t, 0; p0t)

I(pt− , λ2t, τ ; p0t−)
= lim

τ→T

e(1−γ)(a(0;p0t)+bppt)

e(1−γ)(a(τ ;p0t− )+bppt− )
.

The first equality holds on a set of outcomes of measure zero.17 We use the fact that

λ2t is continuous. The second inequality follows from (A.8). The result then follows

directly from the definition of a(·; ·) in (A.4).

Proof of Lemma 2. We want to show ζ0 > ζ1 + bp. We prove this by contradiction.

Suppose that

ζ0 ≤ ζ1 + bp (A.27)

17There is zero probability that a disaster occurs on an announcement date.
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Recall the following pair of equations which determine ζ0 and ζ1:

e(1−γ)(ζ0eβT+bppG) = pGe(1−γ)(ζ1+bp) + (1− pG)e(1−γ)ζ0

e(1−γ)(ζ1eβT+bppB) = pBe(1−γ)(ζ1+bp) + (1− pB)e(1−γ)ζ0 ,
(A.28)

The expressions on the left hand side of (A.28) are weighted averages of e(1−γ)(ζ1+bp)

and e(1−γ)ζ0 with weights between 0 and 1. Thus they must lie between these two

terms.

First assume that γ < 1. Because the exponential is an increasing function, as-

sumption (A.27) implies

ζ0 ≤ ζ0e
βT + bpp

G

ζ1e
βT + bpp

B ≤ ζ1 + bp
(A.29)

Furthermore, if γ > 1, then (A.27) and (A.28) imply

(1− γ)ζ0 ≥ (1− γ)(ζ0e
βT + bpp

G)

(1− γ)(ζ1e
βT + bpp

B) ≥ (1− γ)(ζ1 + bp),

which also implies (A.29)

It follows that

ζ0(1− eβT ) ≤ bpp
G < 0

ζ1(eβT − 1) ≤ bp(1− pB) < 0,

because bp < 0. Therefore ζ0 > 0 and ζ1 < 0, contradicting (A.27).

The following result is of interest in its own right, and will be useful in proving

results for equity in what follows.

Lemma A.3. Let p̃B be the risk-neutral probability of a negative announcement, just

prior to the announcement occurring, provided that the previous announcement was

negative, and p̃G be the analogous quantity, provided that the previous announcement
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was positive. Then

p̃B > p̃G.

Proof. It follows from (10), applied in the limit as τ → T , that pB > pG. This

is intuitive: because states are persistent, if the previous announcement revealed a

negative state, it is more likely that the next announcement will also reveal a negative

state than if the previous announcement were positive.

Define the notation
πG = e(1−γ)ζ0

πB = e(1−γ)(ζ1+bp)

π0,G = e(1−γ)(ζ0eβT+bppG)

π0,B = e(1−γ)(ζ1eβT+bppB).

It follows from (16) that

p̃G = pG
πB

π0,G

p̃B = pB
πB

π0,B
.

First consider the case of γ > 1. We want to show that

pB
pG

>
π0,B

π0,G
=
pB + πG

πB−πG

pG + πG

πB−πG

The second inequality follows from (18), or equivalently, πt− = Et−πt. Moreover,

Lemma 2 implies πB > πG. Because pB+x
pG+x

is a decreasing function of x, the result

follows.

Now consider γ < 1. Because πG > πB, π0,G > π0,B. Thus

π0,B

π0,G
< 1 <

pB

pG
.
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B Pricing equity

Appendix B.1 derives result for equity strips (namely a claim to a dividend paid at a

single point in time). Appendix B.2 uses these results to derive results for dividend

streams. We suppress the j subscript when not essential for clarity.

B.1 Pricing equity strips

We first derive the no-arbitrage condition on intervals without announcements.

Lemma B.1. Let Ht denote the time-t price of a dividend Dt∗ with t∗ ≥ t, such that

the distribution of Dt∗/Dt is determined by the state vector pt, p0t, λ2t. Define s = t∗−t
and τ = t mod T . Then

Ht = H(Dt, pt, λ2t, τ, s; p0t) = Et

[
πt∗

πt
Dt∗

]
, (B.1)

Moreover, for t ∈ N , Ht satisfies

dHt

Ht−
= µHtdt+ σHtdBt +

Ht −Ht−

Ht−
dNt, (B.2)

with µHt = µH(pt, λ2t, τ, s; p0t) and σHt = σH(pt, λ2t, τ, s; p0t), satisfying

µHt + µπt + σHtσ
>
πt +

(
λ̄1(pt) + λ2t

) J̄ (Htπt)

Ht−πt−
= 0. (B.3)

Proof. Equation B.1 follows from the absence of arbitrage and the Markov property for

the dividend process Dt and the state-price density πt. Given that Ht/Dt is a function

of the state variables, (B.2) follows from Ito’s Lemma. Moreover, (B.1) directly implies

that πtHt is a martingale.

Define

ul = inf{t : Nt = l}, (B.4)

as the arrival time of the lth Poisson arrival. Consider t ∈ N and chose ∆t sufficiently

small so that the interval [t, t+ ∆t] does not contain an announcement. It follows from
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(B.2) that

Ht+∆tπt+∆t = Htπt+

∫ t+∆t

t

πuHu(µHu+µπu+σHuσ
>
πu)du+

∫ t+∆t

t

πuHu(σHu+σπu)dBu

+
∑

t<ul≤t+∆t

(πulHul − πul−Hul−
). (B.5)

Rewriting, we have:

Ht+∆tπt+∆t = Htπt+

∫ t+∆t

t

πuHu

(
µHu + µπu + σHuσ

>
πu +

(
λ̄1(pu) + λ2u

) J̄ (Huπu)

Hu−πu−

)
du︸ ︷︷ ︸

(1)

+

∫ t+∆t

t

πuHu(σHu + σπu)dBu︸ ︷︷ ︸
(2)

+
∑

t<ul≤t+∆t

(πulHul − πul−Hul−
)−

∫ t+∆t

t

(
λ̄1(pu) + λ2u

)
J̄ (Huπu)du︸ ︷︷ ︸

(3)

. (B.6)

Since Htπt is a martingale, the time-t expectation of Ht+∆tπt+∆t must be Htπt. In

(B.6), (2) and (3) have zero expectation, so that the integrand in (1) must be zero. We

obtain (B.3).

Proof of Theorem 4. Define Ht as in Lemma B.1. Conjecture that Ht takes the

form (23) for as-yet unspecified functions aφ(τ, s; p0), bφp(s) and bφλ(s). No-arbitrage

implies the following boundary condition for the zero-maturity claim:

H(D, p, λ2, τ, 0; p0) = D.

Thus

aφ(τ, 0; p0) = bφp(0) = bφλ(0) = 0. (B.7)

Consider t ∈ N . Define µHt and σHt as in Lemma B.1. Applying Ito’s Lemma to
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the conjecture (23) implies

µHt = µD +
∂aφ
∂τ
− ∂aφ

∂s
− ∂bφp

∂s
pt −

∂bφλ
∂s

λ2t +
1

2
bφλ(s)

2σ2
λλ2t

+ bφp[−ptηBG + (1− p)ηGB] + bφλ(s)[−κ(λ2t − λ̄2)]

= µD +
∂aφ
∂τ
− ∂aφ

∂s
+ bφpηGB + bφλ(s)κλ̄2

+

(
−∂bφp
∂s
− bφp(ηBG + ηGB)

)
pt +

(
−∂bφλ

∂s
+

1

2
bφλ(s)

2σ2
λ + κbφλ(s)

)
λ2t, (B.8)

and

σHt =
[
σ, bφλ(s)σλ

√
λ2t

]
. (B.9)

Moreover, πt satisfies (A.22) with

µπt = −(β + µ− γσ2)−
(
λ̄1(pt) + λ2t

)
Eν
[
e(1−γ)Zt − 1

]
, (B.10)

and σπt given in (A.23), as Appendix A shows. Finally, (23) and (A.24) imply

J̄ (Htπt)

Ht−πt−
= Eν

[
e(φ−γ)Zt − 1

]
. (B.11)

It follows that

µHt + µπt + σ>Htσπt +
(
λ̄1(pt) + λ2t

) J̄ (Htπt)

Ht−πt−

=µD +
∂aφ
∂τ
− ∂aφ

∂s
+ bφp(s)ηGB + bφλ(s)κλ̄2

+

(
−∂bφp
∂s
− bφp(s)(ηBG + ηGB)

)
pt +

(
−∂bφλ

∂s
+

1

2
bφλ(s)

2σ2
λ − κbφλ(s)

)
λ2t

− (β + µC − γσ2)−
[
λG + pt(λ

B − λG)
]
Eν
[
e(1−γ)Zt − 1

]
− λ2tEν

[
e(1−γ)Zt − 1

]
− γσ2 + (1− γ)bλbφλ(s)σ

2
λλ2t

+
[
λG + pt(λ

B − λG)
]
Eν
[
e(φ−γ)Zt − 1

]
+ λ2tEν

[
e(φ−γ)Zt − 1

]
=
∂aφ
∂τ
− ∂aφ

∂s
− β − µC + µD + λGEν

[
e(φ−γ)Zt − e(1−γ)Zt

]
+ κλ̄2bφλ(s)

+

{
−∂bφp
∂s
− (ηBG + ηGB)bφp(s) + (λB − λG)Eν

[
e(φ−γ)Zt − e(1−γ)Zt

]}
pt

+

{
−∂bφλ

∂s
+

1

2
bφλ(s)

2σ2
λ − κbφλ(s) + (1− γ)bλbφλ(s)σ

2
λ + Eν

[
e(φ−γ)Zt − e(1−γ)Zt

]}
λ2t.

(B.12)
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Equation B.3 implies that the left-hand side of (B.12) is equal to zero. We therefore

have the following ordinary differential equations:

−∂bφp(s)
∂s

− (ηBG + ηGB)bφp(s) + (λB − λG)Eν
[
e(φ−γ)Zt − e(1−γ)Zt

]
= 0 (B.13)

−dbφλ(s)
ds

+
1

2
σ2
λbφλ(s)

2 +
[
(1− γ)bλσ

2
λ − κ

]
bφλ(s) + Eν

[
e(φ−γ)Zt − e(1−γ)Zt

]
= 0, (B.14)

and the partial differential equation

∂aφ
∂τ
− ∂aφ

∂s
= β + µC − µD − λGEν

[
e(φ−γ)Zt − e(1−γ)Zt

]
− κλ̄2bφλ(s). (B.15)

Then (24) uniquely solves (B.13) together with the boundary condition (B.7). More-

over, (B.15) and (B.7) ensure that that aφ takes the form (26).

Finally, we solve for the function h. Recall that a(τ, 0; p0) = 0, for all τ ∈ [0, T ).

Then, from (26), h(τ ; p0) = 0 for all τ ∈ [0, T ). However, h is only defined as a function

of τ + s. Therefore h(u; p0) = 0, for u ∈ [0, T ).

For u ≥ T , (27) iteratively determines h(u; p0). We now derive (27). Absence of

arbitrage and the (almost sure) continuity of Dt, λ2t and s imply, for t ∈ A,

lim
τ→T

H(Dt, pt− , λ2t, τ, s; p0t−) = Et−

[
πt
πt−

H(Dt, pt, λ2t, 0, s; p0t)

]
. (B.16)

We use (23) to write (B.16) more explicitly as

lim
τ→T

exp{aφ(τ, s; p0t−) + b(s)pt−} = Et−

[
πt
πt−

exp{aφ(0, s; p0t) + b(s)pt}
]

(B.17)

Equation 26 and (B.17) then imply the following restriction on h:

exp{h(T + s; p0t−) + b(s)pt−} = Et−

[
πt
πt−

exp{h(s; p0t) + b(s)pt}
]
. (B.18)

Defining u = T + s and substituting in for the announcement SDF πt/πt− from (16)

gives us (27).

It remains to show that (27) uniquely characterizes h. The discussion above estab-

lishes h(u, p0) = 0 is the unique solution for u < T . We show uniqueness by induction
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of the number of announcements prior to maturity of the asset. Define

n = b u
T
c.

Assume by induction that h is unique for u ∈ [(n − 1)T, nT ), n ≥ 1. Then, for each

u ∈ [nT, (n+ 1)T ), (27), applied at p0t− = 0 and p0t− = 1 is a system of two equations

in two unknowns. It therefore uniquely pins down h(u; p0).

We now sign the effect of an announcement on an equity strip.

Corollary B.1. Assume that φ > 1. Then the price of an equity strip with pos-

itive maturity increases when the announcement is positive and decreases when the

announcement is negative.

Proof. We seek to determine the sign of Ht −Ht− for t ∈ A.

Using (23), (26), and the almost-sure continuity of all variables around announce-

ments, with the exception of pt and p0t, it suffices to show that

h(s; 0) > h(s; 1) + bφp(s) (B.19)

for s > 0. The reason is that (B.19) is equivalent to the result that Ht is lower for a

negative announcement than for a positive announcement. Because Ht− is a weighted

average of these outcomes, it follows that Ht < Ht− when the announcement is positive

and Ht > Ht− when the announcement is negative.

When s < T , (B.19) follows from h(s; 1) = h(s; 0) = 0 and bφp(s) < 0 when

φ > 1. We now show (B.19) for general s > T using induction on the number of

announcements prior to maturity. Assume the condition holds for s ∈ [(n− 1)T, nT ).

Using (27) and the definition of the risk-neutral probabilities from Lemma A.3 we have

eh(s;0)+bφp(s−T )pG = p̃Geh(s−T ;1)+bφp(s−T ) + (1− p̃G)eh(s−T ;0)

eh(s;1)+bφp(s−T )pB = p̃Beh(s−T ;1)+bφp(s−T ) + (1− p̃B)eh(s−T ;0).

Lemma A.3 shows that p̃B > p̃G. Therefore, by the induction step

h(s; 0) + bφp(s− T )pG > h(s; 1) + bφp(s− T )pB.
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Finally,

h(s; 0) > h(s; 0) + bφp(s− T )pG

> h(s; 1) + bφp(s− T )pB

> h(s; 1) + bφp(s− T )

> h(s; 1) + bφp(s).

The last inequality follows because bφp is a strictly decreasing function. Therefore

(B.19) holds for all s > 0, which completes the proof.

B.2 Pricing streams of dividends (equity)

The following Lemma extends Lemma B.1 to the case of an asset paying a stream of

dividends.

Lemma B.2. Let Ft = F (Dt, pt, λ2t, τ ; p0t) denote the time-t price of a future dividend

stream {Ds}s∈(t,∞) with growth rates satisfying the Markov property with respect to the

state vector (pt, p0t, λ2t). Then

Ft = Et

∫ ∞
t

πu
πt
Du du (B.20)

Moreover, for t such that t mod T 6= 0, there exist processes µF,t = µF (pt, λ2t, τ ; p0t)

and σF,t = σF (pt, λ2t, τ ; p0t) such that

dFt
Ft−

= µFt dt+ σFt dBt +
Ft − Ft−
Ft−

dNt (B.21)

that satisfy the no-arbitrage restriction

µπt + µFt +
Dt

Ft
+ σπtσ

>
Ft +

(
λ̄1(pt) + λ2t

) J̄ (πtFt)

πt−Ft−
= 0. (B.22)

Proof. Applying (B.1) and interchanging the position of the integral and the expec-

tation, we have

Ft =

∫ ∞
0

H(Dt, pt, λ2t, τ, s; p0t) ds, (B.23)

Equation B.21 then follows by Ito’s Lemma and the homogeneity of H in D. Let

µH(s),t = µH(Dt, pt, p0t, λ2t, τ, s) and σH(s),t = σH(Dt, pt, p0t, λ2t, τ, s), s ∈ [0,∞). Apply
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Itô’s lemma on both sides of Equation B.23, and we get

FtσF,t =

∫ ∞
0

Ht(s)σH(s),tds. (B.24)

In addition, we have

πtFt − πt−Ft− = πt

∫ ∞
0

Ht(s)ds− πt−
∫ ∞

0

Ht−(s)ds

=

∫ ∞
0

(
πtHt(s)− πt−Ht−(s)

)
ds.

(B.25)

Taking conditional expectation of both sides with respect to ν yields

J̄
(
πtFt

)
=

∫ ∞
0

J̄
(
πtHt(s)

)
ds. (B.26)

Finally, by Itô’s Lemma, we can see

FtµF,t =

∫ ∞
0

Ht(s)µH(s),tds−Dt. (B.27)

Dt term shows up as H(Dt, pt, λ2t, τ, 0; p0t) = Dt. Then we have

µFt− +
Dt−

Ft−
+ σπt−σ

>
Ft− +

(
λ̄1(pt) + λ2t

) J̄ (πtFt)

πt−Ft−

=
1

Ft−

(∫ ∞
0

Ht−(s)µH(s),t−ds

)
+

1

Ft−
σ>πt−

∫ ∞
0

Ht−(s)σH(s),t−ds

+
(
λ̄1(pt) + λ2t

) 1

πt−Ft−

∫ ∞
0

J̄ (πtHt(s))ds

=
1

Ft−

∫ ∞
0

Ht−(s)

(
µH(s),t− + σπt−σ

>
H(s),t− +

(
λ̄1(pt) + λ2t

) 1

πt−Ht−
J̄ (πtHt(s))

)
ds

=
1

Ft−

∫ ∞
0

Ht−(s)(−µπt−)ds

=− µπt−
1

Ft−

∫ ∞
0

Ht−(s)ds

=− µπt− ,
(B.28)

where Ht−(s) = H(Dt− , pt− , λ2t− , τ
−, s; p0t−).

38



Since µπt, µFt,
Dt
Ft

, σπt and σFt are continuous processes, we can get

µπt + µFt +
Dt

Ft
+ σπtσ

>
Ft +

(
λ̄1(pt) + λ2t

) J̄ (πtFt)

πt−Ft−
= 0.

During non-announcement periods, the expected return per unit of time dt of asset

j is given by

rjt = µjF t +
(
λ̄1(pt) + λ2t

) J̄ (F j
t )

F j
t−

+
Dj
t

F j
t

. (B.29)

The following lemma characterizes the instantaneous expected return of the claim

of a stream of dividends.

Lemma B.3. For an asset with claim to a stream of dividend with time-t price

F j(Dt, pt, p0t, λ2t, τ), its instantaneous premium at t ∈ N is given by

rjt − rt = −σπtσj>Ft −
(
λ̄1(pt) + λ2t

)
Eν

[
πt − πt−
πt−

F j
t − F

j
t−

F j
t−

]
. (B.30)

Proof. The expected instantaneous return of a dividend stream F (Dt, pt, λ2t, τ ; p0t) is

rjt = Et

[
(dF j

t +Dj
tdt)/F

j
t

dt

]

= µjF t +
Dj
t

F j
t

+
(
λ̄1(pt) + λ2t

) J̄ (F j
t )

F j
t−

= −µπt − σπtσj>Ft −
(
λ̄1(pt) + λ2t

) J̄ (πtF
j
t )

πt−F
j
t−

+
(
λ̄1(pt) + λ2t

) J̄ (F j
t )

F j
t−

= rt − σπtσj>Ft +
(
λ̄1(pt) + λ2t

) J̄ (πt)

πt−
−
(
λ̄1(pt) + λ2t

) J̄ (πtF
j
t )

πt−F
j
t−

+
(
λ̄1(pt) + λ2t

) J̄ (F j
t )

F j
t−

= rt − σπtσj>Ft −
(
λ̄1(pt) + λ2t

)
Eν

[
πt − πt−
πt−

F j
t − F

j
t−

F j
t−

]
,

(B.31)

where rt is the instantaneous riskfree rate. Subtract rt from both sides of Equa-

tion B.31, we obtain the instantaneous premium in Lemma B.3
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Proof of Theorem 5. From Equation 28 and A.19, we have

Eν

[
πt − πt−
πt−

Ft − Ft−
Ft−

]
= Eν

[(
e−γZt − 1)(e−φZt − 1

)]
. (B.32)

From Itô’s Lemma, we know

σFt =

[
σ,

1

Ft

∂Ft
∂λ

σλ
√
λ2t

]
. (B.33)

Substituting two equations above in Lemma B.3, we then get the conclusion of

Theorem 5.
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Figure 1: Portfolio excess returns against CAPM betas
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Notes: The figure shows average excess returns on announcement days (diamonds) and
non-announcement days (squares) on beta-sorted portfolios in daily data from 1961.01-
2016.09. On the horizontal axis is CAPM beta. Also shown are estimated regression
lines for announcement day returns against beta (solid red) and non-announcement
day returns against beta (dashed red).
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Figure 2: Portfolio excess returns against CAPM betas on announcement and non-
announcement days
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Notes: The figure shows average excess returns on announcement days (diamonds)
and non-announcement days (squares) on beta-sorted portfolios in daily data from
1961.01-2016.09 as a function of the CAPM beta. Also shown are estimated regression
lines for announcement day returns against beta (solid red) and non-announcement
day returns against beta (dashed red). We simulate 500 samples of artificial data
from the model, each containing a cross-section of firms. The blue and grey dots show
average announcement day and non-announcement day returns for each sample as a
function of beta, respectively.
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Figure 3: Boxplots of simulated portfolio average excess returns on announcement and
non-announcement days
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Notes: We compute average excess returns on announcement and non-announcement
days for a cross-section of assets in data simulated from the model. The red line shows
the median for each portfolio across samples; the box corresponds to the interquartile
range (IQR), and the whiskers correspond to the highest and lowest data value within
1.5 × IQR of the highest and lowest quartile. We plot returns against the median
CAPM beta across samples for each portfolio. The red solid and dashed lines are
the empirical regression lines of portfolio mean excess returns against market beta on
announcement and non-announcement days, respectively.
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Table 1: Summary statistics of the excess returns of 10 beta-sorted portfolios

Unconditional Announcement day Non-announcement day

k E[RXk] σk βk E[RXk] σk βk E[RXk] σk βk

1 1.61 53.3 0.19 3.73 53.3 0.17 1.34 53.3 0.19
2 1.91 59.4 0.44 7.28 59.2 0.42 1.22 59.4 0.44
3 2.58 68.9 0.57 7.38 70.1 0.56 1.97 68.8 0.57
4 2.69 77.6 0.68 7.88 77.1 0.65 2.03 77.6 0.68
5 2.58 87.5 0.79 7.78 87.7 0.77 1.91 87.4 0.80
6 2.61 95.5 0.89 8.51 96.0 0.86 1.85 95.5 0.89
7 2.57 106.0 1.00 8.41 108.1 0.98 1.82 105.7 1.00
8 2.38 118.0 1.12 10.50 120.4 1.10 1.34 117.6 1.12
9 2.37 136.8 1.30 12.63 139.5 1.29 1.05 136.4 1.30
10 2.35 176.6 1.65 17.94 177.7 1.62 0.35 176.3 1.66

Note: Sample statistics for excess returns of ten beta-sorted portfolios. The sample period
is 1961.01-2016.09. We show the sample mean excess returns (E[RXk]), standard deviation
(σk) and CAPM beta (βk). Each portfolio is labelled by k. Column 1-3 report estimates
with all data available. Column 4-6 and column 7-9 use returns on announcement and non-
announcement days, respectively. The unit is bps per day.
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Table 2: Calibration and simulation parameters

Panel A: Basic parameters
Average log growth in consumption µC(%) 2.52
Average log growth in dividend µD(%) 2.52
Volatility of consumption growth σ(%) 2
Rate of time preference β 0.012
Relative risk aversion γ 3
Firm leverage φ U [1.5, 7]

Panel B: The process for λ1t

Probability of disaster in the good state λG 0
Probability of disaster in the bad state λB 0.054
Probability of switching to the bad state φGB 0.05
Probability of switching to good state φBG 0.33

Panel C: The process for λ2t

Average probability of disaster λ̄2 0.028
Mean reversion in disaster probability κ 0.08
Volatility for disaster probability σλ 0.067

Note: Parameter values for the main calibration, expressed in annual
terms.
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Table 3: Distribution of simulated market betas of portfolios with different leverages
on announcement and non-announcement days

βka βkn βka − βkn
k Median 90% CI Median 90% CI Median 90% CI

1 0.46 [0.38, 0.54] 0.46 [0.38, 0.54] −0.00 [−0.01, 0.01]
2 0.63 [0.54, 0.71] 0.63 [0.55, 0.71] −0.00 [−0.01, 0.01]
3 0.75 [0.66, 0.82] 0.75 [0.67, 0.82] −0.00 [−0.01, 0.01]
4 0.84 [0.77, 0.91] 0.84 [0.77, 0.91] −0.00 [−0.01, 0.01]
5 0.92 [0.86, 0.98] 0.92 [0.86, 0.98] −0.00 [−0.01, 0.01]
6 1.00 [0.94, 1.05] 1.00 [0.94, 1.05] 0.00 [−0.00, 0.00]
7 1.07 [1.02, 1.12] 1.07 [1.02, 1.12] 0.00 [−0.00, 0.00]
8 1.13 [1.08, 1.20] 1.13 [1.08, 1.20] 0.00 [−0.00, 0.00]
9 1.20 [1.14, 1.28] 1.20 [1.14, 1.28] 0.00 [−0.01, 0.01]
10 1.27 [1.20, 1.36] 1.27 [1.21, 1.36] 0.00 [−0.01, 0.01]
11 1.34 [1.27, 1.45] 1.34 [1.27, 1.44] 0.00 [−0.01, 0.01]
12 1.42 [1.34, 1.54] 1.42 [1.34, 1.54] 0.00 [−0.01, 0.01]

Note: For each sample, portfolio market betas (β) on announcement (footnote a) and non-
announcement (footnote n) days are computed, respectively. The market is defined as the
weighted average of portfolios. This table reports summary statistics of the distribution
across samples.

48



Table 4: Empirical values and simulated distributions of
regression slope coefficient of excess returns on portfolio
betas on announcement and non-announcement days.

Coefficient Data Simulation Median 90 % CI

δa 10.47 10.52 [8.19, 13.66]
δn 1.28 2.24 [1.25, 4.07]
δa − δn 9.19 8.31 [5.65, 11.31]

Note: For each sample, the regression Ei[RX
k
t ] = δiβ

k
i + ηki

is estimated, where i = a, n stands for sets of accouncement
and non-announcement days, respectively. k stands for dif-
ferent beta-sorted portfolios. The first column reports the re-
gression coefficients in empirical analysis, using beta-sorted
portfolios. The 90% confidence intervals are computed using
simulation samples.
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Table 5: The equity premium and volatility on announcement and non-
announcement days

Statistic Data Simulation Median 90 % CI

Ea[RX
mkt
t ] 10.66 10.40 [8.08, 13.54]

stda[RX
mkt
t ] 102.2 55.4 [39.8, 72.7]

En[RXmkt
t ] 1.27 2.24 [1.26, 4.07]

stdn[RXmkt
t ] 98.3 55.4 [39.7, 72.3]

Ea[RX
mkt
t ]− En[RXmkt

t ] 9.39 8.19 [5.53, 11.21]
stda[RX

mkt
t ]− stdn[RXmkt

t ] 3.9 −0.0 [−2.5, 2.5]

Notes: Ea[RX
mkt
t ] and En[RXmkt

t ] denote the average excess return on
the market portfolio on announcement days and non-announcement days
respectively. stda[RX

mkt
t ] and stdn[RXmkt

t ] denote analogous statistics
for the standard deviation. The first column reports the empirical esti-
mate. The second column reports the median across samples simulated
from the model. The third column reports the two-sided 90th percentile
confidence interval from simulated samples.
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