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Abstract

The favorite-longshot bias in horse race betting markets, previously attributed to spec-
ulation or irrationality, instead results from profitable deception. Racetracks provide
bettors with predictions that overestimate the chances of longshots and underesti-
mate the chances of favorites. This deception creates arbitrage opportunities, which
the track monetizes by taxing the arbitrageurs. Similar schemes enrich other market
makers, such as investment banks during the boom in mortgage-backed securities.
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Profit is sweet, even if it comes from deception.

Sophocles

1 Introduction

We revisit a classic case of market inefficiency: the favorite-longshot bias in horse-race betting

markets (Thaler and Ziemba, 1988). Wagers on longshots return far less in expectation than

wagers on favorites. Two explanations have been offered: first, that bettors have non-

standard preferences, and second, that bettors form biased beliefs (for reviews, see Sauer,

1998; Ottaviani and Sørensen, 2008). We show that neither need be true. Instead, the

favorite-longshot bias arises from an indirect pump-and-dump scheme, in which the track

deceives uninformed bettors so as to profit by taxing arbitrageurs.

Horse race betting markets in the United States are run as parimutuels. Bettors place

wagers on outcomes (e.g., Secretariat winning the race), the track takes a tax, and the

remainder is divided among winning wagers. If bettors are risk neutral and have correct

beliefs, then expected returns should be the same for favorites and longshots. In practice,

favorites are underbet, and longshots are overbet. Whereas a favorite with 1/1 odds (i.e.,

that pays a $1 dividend on a winning $1 wager) returns 85 cents on the dollar on average, a

longshot with 30/1 odds returns just 63 cents on the dollar.

Previous explanations for the favorite-longshot bias mirror trends in economics. Early

studies used parimutuel odds to estimate the preferences of a representative agent in an ex-

pected utility framework. Under this approach, a preference for risk rationalizes the favorite-

longshot bias (Weitzman, 1965; Ali, 1977; Golec and Tamarkin, 1998). More recent work

has favored psychological explanations. Here, biased beliefs explain the favorite-longshot

bias—specifically, a tendency to overweight small probabilities in the manner of prospect

theory (Jullien and Salanié, 2000; Snowberg and Wolfers, 2010).1

We show that the favorite-longshot bias is driven by profitable deception, rather than

risk-seeking preferences or psychological biases. The track deceives uninformed bettors by

suggesting inflated probabilities for longshots and depressed probabilities for favorites. This

deception is strategic. By tricking uninformed bettors into underbetting favorites, the track

1Separately, a series of papers show that speculative or irrational bettors need only place a small share of
the wagers in order to generate the observed bias (Hurley and McDonough, 1995; Ottaviani and Sørensen,
2009, 2010; Gandhi and Serrano-Padial, 2014). Because the tax makes it inefficient to bet against longshots,
any overbetting of longshots—by virtue of risk-loving preferences, biased beliefs, or other anomalies—cannot
be fully arbitraged away.
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creates arbitrage opportunities for informed bettors and, from that arbitrage, additional tax

revenue for itself. This rendering requires only that some bettors be gullible, rather than

speculative or irrational.

There are two ways to bet on horse races: at the track or through off-track outlets

such as betting websites. Whereas track bettors pay the full tax, off-track bettors receive

a rebate—a portion of their wagers back, win or lose—that lowers their effective tax rate.

This price discrimination sorts the informed from the uninformed. Off-track bettors tend

to wager at the close of the betting window, when live odds are most informative. Many of

these bettors are thought to handicap horses using algorithms trained on databases of race

histories. Bettors at the track instead receive race cards, or curated pamphlets, featuring

the morning-line odds—a set of odds, one for each horse, that has no formal bearing on the

parimutuel odds.

We show that the morning lines embed a favorite-longshot bias. They are insufficiently

short for favorites and insufficiently long for longshots. If bettors are risk neutral, favorites

with 1/1 odds should win about half the time. In practice, horses with morning-line odds of

1/1 win nearly two in three races, yet morning lines are rarely shorter than 1/1. Similarly,

longshots with 30/1 odds should win about 3% of the time. In practice, horses with 30/1

morning-line odds win about 1% of the time, yet morning lines are rarely longer than 30/1.

Despite their formal irrelevance, the morning-line odds predict the parimutuel odds until

minutes before the start of the race, after which the parimutuel odds shorten for favorites

and lengthen for longshots.

These stylized facts motivate a two-period model with two risk-neutral representative

agents. In the first period, track bettors infer beliefs, q, under the assumption that the

morning-line odds reflect wagering by risk-neutral bettors with accurate beliefs. As expected-

value maximizers, track bettors wager in proportion to their beliefs, generating odds that

reproduce any bias inherent in the morning-line odds. (We rationalize their decision to

gamble with a direct utility from gambling that exceeds the tax, as in Conlisk (1993).)

Track bettors are unsophisticated in the sense of Milgrom and Roberts (1986): they fail to

appreciate that the track may distort the morning lines for strategic reasons.2

In the second period, off-track bettors infer beliefs, p(q), from the observed rates at which

horses with implied probability q actually win. Given that the morning-line odds embed a

favorite-longshot bias, this correction leads off-track bettors to view favorites as underpriced,

2Milgrom and Roberts (1986) show that competition among senders (i.e., tracks) or skepticism among
receivers (i.e., track bettors) mitigate mistakes by receivers. The track is a monopolist in our model, and track
bettors, without historical data on morning lines and outcomes, have little empirical basis for skepticism.
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and with the rebate, perhaps profitably so. The track sets the profit-maximizing rebate as a

monopolist, and a large number of off-track bettors place all wagers with positive expected

value until no more exist. In equilibrium, late wagering concentrates on favorites, and the

favorite-longshot bias moderates. The bias does not disappear, however, because off-track

bettors pay some tax.

We estimate our model using a unique dataset. Past studies of the favorite-longshot

bias in parimutuel betting markets ignore the morning-line odds, perhaps because they are

difficult to obtain or because they have no formal bearing on the final odds.3 We scrape

morning-line odds each morning. Separately, we scrape minute-by-minute live odds, which

we use to show how late wagering moves the parimutuel odds away from the morning lines.

Past studies engage in a curve-fitting exercise. A model is proposed which allows for a

downward sloping relationship between the parimutuel odds and expected returns. Using

the observed parimutuel odds, at least one parameter is tuned to match the slope in the

data. Estimates are then interpreted as evidence of risk-loving preferences (e.g., Ali, 1977)

or probability weighting (e.g., Snowberg and Wolfers, 2010).

By comparison, our model is restricted in two ways. First, it predicts returns by observing

the formally irrelevant morning-line odds, not the parimutuel odds. And the only parameters

in our estimation routine are hyper-parameters: the bandwidths used to (non-parametrically)

estimate the beliefs of off-track bettors, which we select using cross validation. Despite these

handicaps, our model more closely predicts the observed relationship between odds and

returns than competing models with risk-loving or biased agents.4

Our model predicts differences across tracks in the extent of the favorite-longshot bias,

which is nonexistent at some tracks and severe at others. In competing models, it is not

obvious why preferences or beliefs would vary by track. In our model, deception in the

morning-line odds generates the favorite-longshot bias. Some tracks do not distort the morn-

ing lines, and odds observed at those tracks are generally unbiased.5 Other researchers have

3For instance, Ottaviani and Sørensen (2009) justify studying racetrack parimutuel markets because of
“the absence of bookmakers (who could induce biases).” We show that the morning-line odds, devised by
the track oddsmaker, induce a favorite-longshot bias.

4Gandhi and Serrano-Padial (2014) show that a model with two types of bettors—one with accurate
beliefs and the other with random beliefs—predicts the favorite-longshot bias for win bets. They fit their
model with three parameters: two that describe the distribution of beliefs among uninformed bettors, and
a third measuring the share of uninformed bettors. We achieve comparable accuracy while specifying the
beliefs of uninformed bettors and deriving the share of wagers from each type. In their model, the beliefs
of uninformed bettors follow an arbitrary distribution. In our model, uninformed bettors take their beliefs
from a manipulative agent. This implies divergent interpretations: the longshot-favorite bias arises because
some bettors are deceived, not because some bettors bet randomly.

5Unfortunately, there are too few horse track parimutuel markets—in the world, let alone in our data—to
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noted that parimutuel betting markets in Hong Kong do not exhibit a favorite-longshot bias

(Busche and Hall, 1988). We observe that race cards in Hong Kong do not display morning

lines.6

Deceptive morning lines generate excess profit for the track. State-regulated tax rates

determine the losses that track bettors would sustain if they were well informed. Deceived

track bettors sustain excess losses. Because arbitrage is competitive, these excess losses flow

in their entirety into the track’s coffers, laundered through taxes on arbitrageurs. Using our

model, we estimate each track’s incremental profit from deception. For tracks that embed

a favorite-longshot bias in the morning-line odds, we estimate that as much as 10% of their

gambling revenues come from taxing arbitrageurs.

In pump-and-dump schemes, traders distort asset prices (i.e., pump) so as to sell their

holdings at higher prices (i.e., dump). Such schemes require the perpetrator to hold assets,

entailing financial risk. They are also illegal. We illustrate an indirect pump-and-dump

scheme, in which the market maker distorts asset prices so as to profit by taxing arbitrageurs.

As in conventional pump-and-dump schemes, the market maker profits from its deception,

but it does so without financial risk and in a manner that is apparently legal.

Other market makers perpetrate similar schemes. In the lead-up to the financial crisis,

investment banks, along with rating agencies, misled unsuspecting investors about the risk

in mortgage-backed securities. Deceived investors overpriced these securities, generating

demand from savvy investors for ways to short them, which the same banks engineered and

sold for large fees (Lewis, 2015). As with racetracks, investment banks created arbitrage

opportunities by deceiving uninformed investors and profited by taxing the arbitrageurs.

Our model of deception by market makers is distinct from models of deception by firms

(Gabaix and Laibson, 2006; Spiegler, 2011; Heidhues, Kőszegi and Murooka, 2016; Heidhues

and Kőszegi, 2017). For instance, Gabaix and Laibson (2006) model a firm that shrouds

add-on costs, such as high-priced printer toner. Because the firm cannot price discriminate,

it loses money from sophisticated customers, who only purchase the subsidized printers,

and makes money from naive customers, who purchase the toner as well. In our model, the

market maker taxes informed and uninformed agents at different rates and profits from both.

This rendering is also distinct from betting markets in which a bookmaker, rather than

a parimutuel, sets the betting odds. Bookmakers generate excess returns by taking risky

positions against bettors with inaccurate beliefs, while using the tax to limit betting by

say with any confidence which factors correlate with deception.
6Hong Kong race cards can be accessed at: http://racing.hkjc.com/racing/content/PDF/RaceCard/.
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“sharps” (Levitt, 2004). In our model, the track encourages the sharps to participate and

generates a riskless profit by taxing them.

Considerable evidence shows that financial markets systematically misprice securities

(for a review, see Barberis and Thaler, 2003). Leading explanations for these anomalies

focus on noise traders who either possess non-standard preferences (Benartzi and Thaler,

1995) or form irrational beliefs (Shleifer and Summers, 1990). We show that a longstanding

market anomaly, often rationalized by a preference for risk or a tendency to overweight small

probabilities, is better explained by a model with zero noise traders. When some traders are

gullible, deception by interested parties can separate prices from fundamental values.

The remainder of the paper is organized as follows. Section 2 describes the context, and

Section 3 describes the data. Section 4 illustrates the favorite-longshot bias and other stylized

facts. Section 5 details our model, Section 6 compares its predictions with the data, and

Section 7 presents its estimates of each track’s profit from deception. Section 8 concludes.

2 Context

In parimutuel markets, bettors place wagers on outcomes (e.g., a certain horse winning

the race), the market maker takes a state-regulated share t known as the takeout, and the

remainder is split among wagers on the winning outcome. Let si denote the share of wagers

placed on outcome i. A $1 wager on i returns (1− t)/si if i occurs, and it returns 0 if i does

not occur. Prospective returns are represented as odds, or as the dividend paid on a winning

$1 wager: (1 − t)/si − 1.7 For example, a winning bet at 2/1 odds pays a $2 dividend for

every $1 wagered, along with the principal.

Tracks list the parimutuel odds in real time on a central board called the totalizator,

or tote board, but only the final odds, or those the start of the race, are used to calculate

payoffs. Live odds are also listed online.

Wagers on different types of outcomes are collected in separate pools, and odds are

calculated within each pool. Almost all tracks offer win, place, and show pools, in which

bets are placed on individual horses, and wagers pay out if the horse finishes first (win),

first or second (place), or in the top 3 (show). Tracks also offer a selection of “exotic” pools,

in which payoffs are contingent on multiple outcomes. Exacta, trifecta, superfecta, and

hi-5 pools pay out if the bettor correctly predicts the first two, three, four, or five horses,

7In practice, tracks round odds down (to multiples of 5 cents for small odds and to larger multiples for
higher odds), a practice known as breakage that slightly increases the track’s effective takeout.
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respectively, in order; quinella pools pay out if the bettor correctly predicts the first two

horses in any order; and daily-double, pick-3, pick-4, pick-5, and pick-6 pools pay out if

the bettor correctly predicts the the winners of two, three, four, five, or six races in a row,

respectively.8

Tracks price discriminate between track bettors and off-track bettors, who wager either

at off-track betting locations or online. Whereas track bettors pay the full takeout, off-track

bettors receive a rebate—a proportion of the principal in return, win or lose—which lowers

their effective tax rate. Rebates reflect a nuanced price differentiation strategy, varying by

track, by pool, by off-track intermediary, by payout method (cash vs. redeemable points),

and by bettor characteristics, including past wagering activity.

Figure 1: An example race card entry, prominently displaying the morning-line odds (15-1).

Source: Equibase.com

The rebate helps sort bettors by their level of sophistication. Informed bettors wager

in the minutes or seconds before the race begins—i.e., when the live odds best predict

the final odds (Gramm and McKinney, 2009). These late wagers are thought to be made

disproportionately by off-track bettors, sometimes aided by algorithms.9 Track bettors, by

8Many exotic wagers can also be constructed as a parlay, or contingent series, of wagers in other pools.
For instance, a daily-double wager is logically equivalent to placing the full wager on a win bet in the first
race and then placing any winnings on a win bet in the second race. Previous work finds that daily-double
returns are less than those of the equivalent parlay, though not by a statistically significant margin—and
claims that this constitutes evidence of efficient markets (Ali, 1979). We note that parlays are inefficient and
hence, impose limits on arbitrage. Though the takeout is generally higher in exotic pools than in win, place,
and show pools, the takeout in any exotic pool is always less than the takeout for the equivalent parlay. For
example, paying the daily-double takeout once is less expensive than paying the win takeout twice.

9From twinspires.com, the online betting platform owned by Churchill Downs, “Late odds changes con-
tinue to confuse and confound horseplayers...There are big players in the pools and they are called ‘whales.’
Some whales, not all, use computer software to handicap and make their bets. Because of the volume of
the whales’ play, they are given rebates by advance deposit wagering companies to stimulate more betting.”
https://www.twinspires.com/blog/2018/2/26/powell-explanation-behind-late-odds-changes.
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contrast, receive a race card, or a pamphlet with curated information about each horse.

Figure 1 shows an example race card. Prominently displayed information include the horse’s

name, number, and color—and of greatest consequence for this paper, its morning-line odds.

The morning-line odds are win odds chosen by the oddsmaker at the track. Unlike

in gambling markets with bookmakers, in which the bookmaker sets the final odds, the

odds chosen by the track oddsmaker have no formal bearing on the odds that the track

pays out. Nonetheless, the morning-line odds may influence the parimutuel odds. Publicly,

oddsmakers argue that the morning-line odds attempt to “predict, as accurately as possible,

how the betting public will wager on each race.”10 We propose an alternative explanation:

distortion of the morning-line odds creates arbitrage opportunities for off-track bettors and,

in so doing, additional revenue for the track.

3 Data

Most empirical studies of the favorite-longshot bias in horse-racing markets analyze data

from the race chart, which summarizes the outcome of a race. We compile a similar dataset

by collecting: 1) the final odds for each horse in the win pool, 2) the winning outcomes in each

pool, 3) the returns to wagers on those outcomes, and 4) the total amount wagered in each

pool.11 Separately, we collect track- and pool-specific takeout rates from the Horseplayers

Association of North America.

We supplement this standard dataset with the morning-line odds. Whereas historical

race charts for US races are freely available, historical race cards are not. However, the

morning-line odds are published online on the morning of the race, and we scraped these

odds each morning for 17 months from 2016 to 2018.12 In order to analyze the data within

track, we restrict our sample to the 30 tracks for which we observe at least 5,000 horse starts.

Our final dataset comprises 238,297 starts in 30,631 races.13

Table 1 presents summary statistics by track. Takeouts range from 12% to 31%. For

comparison, US bookmakers typically take 9% of winnings on common wagers, such as spread

10Quoted in Getting a Line on the Early Odds, by Joe Kristufek. https://www.arlingtonpark.com/

node/10222. Similarly, the horse racing columnist Bob Ehalt writes, “The intent [of the morning lines]
is to frame how the betting on the race will unfold.” https://www.americasbestracing.net/gambling/

2018-morning-line-odds-betting-tool.
11One limitation of these data is that only in the win pool are final odds listed for all outcomes (i.e.,

horses); in other pools, only the odds for the winning outcome are listed.
12The scraper went offline from December 2, 2016 to July 23, 2017.
13This reflects the discarding of 91,727 starts in 12,164 races at 68 excluded tracks. Scraping or parsing

issues led to the exclusion of an additional 4,147 races at both included and excluded tracks.
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or over-under bets, on other sports. The takeout is typically smaller in the win, place, and

show (WPS) pools than in the exotic pools, yet as the final two columns show, more money

is wagered in exotic pools at every track.

All standard errors reported in the remainder of the paper—either directly in the text

or in tables, or as 95% confidence intervals in figures—are estimated from 10,000 bootstrap

samples blocked by track.14

4 Stylized facts

Returns are systematically miscalibrated. Figure 2 shows observed returns in the win pool

as a smooth function of log final odds. Wagers at all odds lose money on average, given the

large takeouts. However, wagers on horses with longer odds lose more money. A $1 bet on a

1/1 favorite loses 15 cents in expectation, a smaller loss than the average takeout of 17 cents.

By contrast, a 20/1 longshot loses 29 cents, and a 50/1 longshot loses 47 cents.15 Bettors

could reduce their losses by betting on favorites instead of longshots.

We show that models with non-standard agents do a poor job predicting the favorite-

longshot bias. A long line of papers use final odds in win pools, along with observed returns,

to estimate the preferences of a representative agent with accurate beliefs (e.g., Weitzman,

1965; Ali, 1977). Under this model, the favorite-longshot bias is rationalized by a taste for

risk. Others observed that the same data can instead be used to estimate the beliefs of a

risk-neutral representative agent who transforms probabilities in the manner predicted by

prospect theory (Snowberg and Wolfers, 2010). Under this model, the favorite-longshot bias

is rationalized by overweighting small probabilities and underweighting large probabilities.

Figure 3 shows predicted returns from each model.16 For both models, predicted returns

14The standard bootstrapping approach is to resample observations, or in our case, an outcome in a given
pool. However, doing so would create bootstrap samples for which the number of winning outcomes in each
pool need not be one. As a result, we resample entire pools, rather than individual outcomes. The lone
exception is Figure 5, for which the confidence intervals are derived from homoskedastic standard errors.

15These estimates are consistent with those from other analyses of parimutuel odds. For instance, Snowberg
and Wolfers (2010) estimate expected returns of about 85% for a 1/1 favorite, 75% for a 20/1 longshot, and
55% for a 50/1 longshot. The favorite-longshot bias tends to be more severe in markets where bookmakers set
the odds. For instance, Jullien and Salanié (2000) estimate expected returns of close to 100% for 1/1 favorites
and 50% for 20/1 longshots using data from the United Kingdom, where all odds are set by bookmakers.

16We estimate these models following Snowberg and Wolfers (2010). In equilibrium, agents wager until
the expected utility of a $1 bet equals $1, or until piU(Oi + 1) = 1 ∀i ∈ R in the risk-loving model.
For the probability-weighting model, the equilibrium condition is π(pi)(Oi + 1) = 1 ∀i ∈ R. Each model
is governed by one parameter. For the risk-loving model, they use the CARA utility function U(x) =(
1 − exp(−αx)

)
/α, where α modulates the agent’s risk tolerance. For the probability-weighting model,

9



Figure 2: Expected returns for win bets, with 95% confidence intervals. The horizontal
line marks the average takeout.

Note: Estimated using a local linear regression with a Gaussian kernel. The bandwidth, of
log(1.65), minimizes the leave-one-out mean-squared error.

for favorites exceed observed returns. The difficulty is that neither class of models can ratio-

nalize highly negative returns for probable events. Risk-loving agents pay a large premium

for lottery tickets, but they pay a small premium to gamble on likely events. Prospect-theory

agents overweight large probabilities and thus need to receive a premium in order to wager

on likely events. The decision to gamble is commonly rationalized by locally risk-loving pref-

erences (e.g., Thaler and Ziemba, 1988) or probability weighting (e.g., Barberis, 2012), but

they use the weighting function π(p) = exp
[
−
(
− log(p)

)β]
, where β modulates the degree to which

the agent overweights small probabilities and underweights large ones (Prelec, 1998). We estimate each
model by minimizing the squared distance between observed returns and expected returns, pi(Oi + 1),
where Oi are the observed parimutuel odds, and pi can be found by solving the appropriate equilibrium
condition. In the risk-loving model, we estimate α̂ = −0.029 (0.001), implying an extreme taste for risk. This
representative agent is indifferent between $100 for sure and a gamble that pays $123 with 50% probability
and $0 otherwise. In the probability-weighting model, we estimate β̂ = 0.900 (0.003), implying overweighting
of small probabilities. This representative agent behaves as if an event with 1.0% probability occurs 1.9%
of the time. These estimates are more slightly more extreme than those of Snowberg and Wolfers (2010),

who estimate α̂ = −0.017 and β̂ = 0.928. Snowberg and Wolfers (2010) use these estimates to predict the
odds for exotic bets, which they compare to the observed odds in the Jockey Club database. They find that
both models have large prediction errors, though the errors are smaller for the probability-weighting model.
Unfortunately, we cannot replicate this analysis using our data, as odds for exotic bets are not listed on the
race chart.
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Figure 3: Predicted returns for win bets from models with non-standard agents.

Note: Estimated using a local linear regression with a Gaussian kernel. For comparability,
we use the same bandwidth for the predicted estimates as for the observed estimates: the
bandwidth used in Figure 2, of log(1.65).

neither explanation can account for a willingness to lose considerable sums, in expectation,

on gambles that are likely to pay out.17

These models also fail to predict heterogeneity in the favorite-longshot bias across tracks.

Figure 4a shows expected returns in the win pool as a smooth function of log final odds,

separately by track. Some tracks exhibit little or no bias, whereas others exhibit severe

bias. We summarize the extent of the favorite-longshot bias at a given track by its mean

returns, µ, or the expected return on a $1 wager for a bettor who picks horses at random.

A random betting strategy overbets longshots relative to the market. Were horses priced

efficiently, overbetting longshots would not incur a penalty. Instead, a random betting

strategy would surrender the takeout on average, and µ would equal 1− t. When longshots

yield lower returns than favorites, however, overbetting longshots generates excess losses.

Hence, a steeper favorite-longshot bias implies lower mean returns, µ. Figure 4b shows

normalized mean returns, µ/(1 − t), by track. The tracks are ordered by their estimated

17These explanations were more sensible decades ago, when favorites were even-money bets, or close to
it (Thaler and Ziemba, 1988). Our model suggests an explanation for why the favorite-longshot bias has
moderated over time: the emergence of off-track betting.
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Figure 4: Returns for win bets, by track. In (b), tracks are sorted by the estimated expected
returns at 30/1 odds in (a).

(a) Expected returns (b) Normalized mean returns

Note: Track-specific expected returns in (a) estimated as in Figure 2. For comparability, we
use the same bandwidth as in the full sample, of log(1.65).

returns at win odds of 30/1, as shown in Figure 4a. For some tracks, expected returns

are approximately flat and normalized mean returns are close to 1, implying that wagering

randomly does not generate excess losses. For the remaining tracks, estimated returns are

greater for favorites than for longshots, and random wagering generates excess losses. These

differences across tracks cannot be explained solely by sampling variation. A Wald test

rejects the null hypothesis that normalized mean returns, µ/(1 − t), are equivalent at all

tracks (p < .001).

The favorite-longshot bias appears to be related to the morning-line odds. One immediate

observation is that morning-line odds fail at their ostensible goal of predicting final odds.

Figure 5 shows average final odds at each observed morning-line odds. Morning-line odds

are compressed—on average, those shorter than 4/1 are insufficiently short, and those longer

than 4/1 are insufficiently long. For example, favorites assigned morning-line odds of 1/1

finish with final odds of 1/2 on average, and longshots assigned morning-line odds of 30/1

finish with final odds of 50/1 on average. Were oddsmakers truly trying to predict final odds,

12



Figure 5: Average log final odds at each morning-line odds, with 95% confidence intervals.

they could do better by predicting more extreme values.

Final odds diverge from morning-line odds just before the start of the race. Figure 6 shows

a time series of live odds from a separate dataset of 1,362 US races, depicting the average

log ratio of parimutuel odds to morning-line odds in the hour before the race, separately

for the favorite and the longshot (as defined by the morning-line odds). On average, the

parimutuel odds for the favorite and longshot hover around their respective morning-line

odds until about 15 minutes before the start of the race. Thereafter, the longshot’s odds

lengthen and the favorite’s odds shorten, implying late wagering on favorites (Asch, Malkiel

and Quandt, 1982; Camerer, 1998).

The morning-line odds not only mispredict the final odds—they also imply distorted

beliefs about a horse’s chances of winning. Consider a win pool in which risk-neutral bettors

wager until the final odds converge to the morning-line odds (denoted by l). In equilibrium,

the expected value of betting on any horse—given subjective beliefs q—must be the same

for all horses in the race. That is, qi(li + 1) = qj(lj + 1) ∀i, j ∈ R, where R is the set of

horses in a race, and l + 1 is the return on a winning $1 wager. Thus,

qi =
1

li + 1

∑
j

1

lj + 1
(1)

The subjective beliefs implied by the morning-line odds are simply the inverse of the associ-
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Figure 6: Time series of the log ratio of live parimutuel odds to morning-line odds, sepa-
rately for the favorite and longshot (as defined by the morning lines).

Note: These estimates reflect second-by-second averages over 1,362 races in 2017 and 2018
for which at least 20 time-stamps were observed during the last 60 minutes of the betting
window, and for which the morning-line odds uniquely define a favorite and a longshot. We
interpolate missing time-stamps by assigning the most recently observed live odds.

ated returns on a $1 wager, normalized such that these beliefs sum to 1.18

These beliefs are misleading. Figure 7 shows a calibration plot—the observed win rate

(denoted by p) as a smooth function of q, the win probabilities implied by the morning-line

odds.19 Longshots underperform their implied win probabilities, q. At q = 0.03, for example,

18In general, the inverse implied returns do not sum to 1. This happens because some horses are assigned
morning-line odds but do not start the race (i.e., scratches and alternate entries); because morning-line
odds are chosen from discrete bins; and because oddsmakers do not perfectly account for the takeout and
breakage.

19We are interested in estimating a smooth function, p(q), that measures the rate at which horses with an
implied probability of winning, q, actually win the race. To do so, we regress an indicator for whether the
observed horse won the race on log q, its log probability of winning, as implied by the morning-line odds and
as calculated in (1). In particular, we use the Nadaraya-Watson estimator, otherwise known as local constant
regression, which unlike a local linear or local polynomial regression, ensures that the predicted values stay
between the bounds of the outcome variable—i.e., between 0 and 1. The challenge is that we would like
p(q) to be weakly increasing, reflecting an assumption that the morning lines correctly order the horses by
their chances of winning, even if they imply poorly calibrated beliefs. To do so, we follow Hall and Huang
(2001) in assigning each observation a weight between 0 and 1, and, via quadratic programming, minimizing
the Kullback–Leibler divergence of the weight vector, subject to the constraints that 1) the function p(q),
estimated at every half-percentage-point value of q, is weakly increasing; and 2) the weights sum to 1. This
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Figure 7: Observed win rate, p, as a function of the win probability implied by the morning-
line odds, q, with a histogram of q.

horses win just 1 in 100 races; at q < 0.03, horses effectively never win. Morning-line odds

of 30/1 typically generate subjective beliefs around q = 0.03. Of the 7.869 starts assigned

30/1 morning-line odds, just 83, or 1.1%, won the race. Morning-line odds of 50/1 imply

win probabilities around q = 0.02. Of the 588 starts assigned morning-line odds in excess of

30/1, just 2, or 0.3%, won the race. Symmetrically, favorites outperform their implied win

probabilities. At q = 0.5, for example, p = 0.63.

The morning-line odds mislead at some tracks but not at others. Figure 8 replicates the

estimate of p separately by track. Some tracks post well-calibrated morning-line odds (e.g.,

PRX), whereas others post misleading morning-line odds (e.g., LA). Tracks that promulgate

distorted predictions deceive bettors in the same manner—by assigning insufficiently long

morning lines to longshots and insufficiently short morning lines to favorites. In other words,

these tracks embed a favorite-longshot bias in the morning-line odds.

routine does not guarantee convergence. For instance, if a lone horse with a high implied win probability q
did not win its race, the monotonicity constraint will force the weight on this observation to 0, sending the
Kullback–Leibler divergence to infinity. To avoid this pitfall, we employ a bandwidth h · λ(x), where h is a
scalar bandwith, and λ is a local bandwidth factor that increases the bandwidth in regions of low density.

This multiplicative factor is λ(x) =
√

exp
(

1
N

∑
i log f̃(log qi)

)
/f̃(x), where f̃ is a kernel density estimate of

log q using Silverman’s rule-of-thumb bandwidth. The steps are as follows. We find the bandwidth, h, that
minimizes the leave-one-out mean-squared error. Fixing the bandwidth, we then find the vector of minimally
divergent weights that satisfy the weak monotonicity condition.
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Figure 8: Observed win rate (p) as a function of the win probability implied by the morning-
line odds (q), by track. The gray outline shows a histogram of q.
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Figure 9: Scatter plot, with a regression fit line, of miscalibration in the morning-line odds,
δ, and normalized mean returns for win bets, µ/(1− t).

Across tracks, miscalibration in the morning-line odds predicts the favorite-longshot bias.

To see this, define δ as the expected absolute difference between p and q, or
∫ 1

0
|p− q|dF (q).

In other words, δ measures miscalibration in the morning-line odds. On average, a randomly

sampled horse will have an implied win rate, q, that differs by δ from the observed win rate,

p, of horses with similar implied win rates. Second, let the normalized mean returns, or

µ/(1 − t) in Figure 4b measure the extent of the favorite-longshot bias. Figure 9 shows a

strong correlation between δ and µ/(1− t) across tracks. The more severe the miscalibration

in the morning-line odds, the more severe the favorite-longshot bias.

5 Theoretical framework

These stylized facts, along with the contextual background, motivate a new explanation for

the favorite-longshot bias: it is an artifact of profitable deception by the track. We write

down a model in which the track’s gambling revenue is increasing in the disagreement among

bettors, and we imbue those bettors with beliefs estimated from the morning-line odds. In

contrast with past approaches, bettors in our model are neither speculative nor irrational.
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5.1 Setup

Consider a two-period model with two risk-neutral representative agents: track bettors and

off-track bettors. Track bettors gamble in the first period; off-track bettors gamble in the

second. Track bettors gain direct utility from gambling; off-track bettors do not. Track

bettors pay the full tax; off-track bettors receive a rebate that defrays part of the tax. Track

bettors and off-track bettors differ in their beliefs, but neither type suffers from psychological

biases in interpreting probabilities.

We analyze a generic betting pool with N outcomes, indexed by i (e.g., a win pool with

N horses). A large number of (potential) track bettors each consider placing a $1 wager on

one outcome (e.g., Gandhi and Serrano-Padial, 2014). These track bettors share the same

beliefs about the probability of each outcome obtaining, denoted qi, but they receive different

amounts of direct utility from gambling, u. Let O
(1)
i denote the equilibrium odds for outcome

i in the first period. The utility of a $1 wager on outcome i is qi(O
(1)
i + 1) + u—i.e., the

expected value of the gamble under their beliefs, plus the utility shock. In equilibrium, only

track bettors with u ≥ t choose to gamble, and the parimutuel odds are:

O
(1)
i = (1− t) · 1

qi
− 1

The share of bets placed on outcome i is qi. Hence, track bettors wager in proportion to

their beliefs. We normalize the total amount wagered by track bettors to 1, which implies

that track bettors wager qi on outcome i.

In the second period, off-track bettors place bets of size xi. The total amount bet is

1 +
∑
x, and the second-period parimutuel odds are:

O
(2)
i = (1− t) · 1 +

∑
x

qi + xi
− 1

Off-track bettors possess subjective beliefs, pi. They also receive a rebate, r, on each

dollar they bet, win or lose. They do not receive any direct utility from gambling. Hence,

the expected value of wagering xi under their beliefs is:

Eoff-track[xi] = xi ·
(
pi · (1− t) ·

1 +
∑
x

qi + xi
+ r

)
(2)
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As a monopolist, the track chooses the rebate, r, that maximizes its gambling revenue:

π = t · 1 + (t− r) ·
∑

x, (3)

where the first and second terms are the track’s revenues from track and off-track bettors,

respectively. A higher rebate increases wagering by off-track bettors (
∑
x), at the expense

of lowering the track’s effective tax rate on those wagers (t− r).

5.2 Results

We consider a competitive equilibrium among off-track bettors. This equilibrium consists

of a set of wagers by off-track bettors, xi, such that 1) Eoff-track[xi] = xi for xi > 0—i.e.,

off-track bettors make zero profits; and 2) Eoff-track[xi] ≤ xi for xi = 0—i.e., no excess profits

are left on the table. We first show that an equilibrium exists.

Lemma. Reorder the outcome indices i such that:

p1

q1

≥ p2

q2

≥ · · · ≥ pi
qi
≥ pi+1

qi+1

≥ · · · ≥ pN
qN

An equilibrium exists iff ∃m such that:

pm
qm

> λm ≥
pm+1

qm+1

, (4)

where λm ≡
√

Pm(1−Pm)
Qm(1−Qm)

, Pm ≡
∑m

i pi, and Qm ≡
∑m

i qi. Under this equilibrium, xi > 0 for

i ≤ m and xi = 0 for i > m.

Proof. In Appendix A.

The index m separates outcomes that off-track bettors wager on from those they do not.

Pm and Qm are the cumulative subjective probabilities—held by off-track and track bettors,

respectively—among outcomes wagered by off-track bettors. In equilibrium, off-track bettors

wager on outcomes for which their own beliefs are high relative to those of track bettors.

Proposition. If p1 > q1, then ∃m ∈ {1, . . . , N − 1}.

Proof. In Appendix A.

An equilibrium exists so long as subjective beliefs do not coincide for every outcome—i.e., if

p1 > q1 (and hence, pN < qN). If so, m ≥ 1, implying that off-track bettors always wager on
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the outcome with the highest ratio of subjective beliefs. In addition, m < N , implying that

off-track bettors never wager on the outcome with the lowest ratio of subjective beliefs.

Equilibrium wagers by off-track bettors are:

x∗i =

pi/λm − qi, i ∈ {1, . . . ,m}

0, i ∈ {m+ 1, . . . , N}
(5)

The amount off-track bettors wager is increasing in their own subjective beliefs, pi, and

decreasing in those of track bettors, qi, all else equal. Off-track bettors collectively wager:∑
i

x∗i = Pm/λm −Qm (6)

This implies:

Corollary. Pm > Qm.

Proof. Since x∗1 > 0, it follows that
∑

i x
∗
i > 0, and from (6) that Pm > Qm.

In equilibrium, off-track bettors wager on a set of outcomes which they believe to be collec-

tively more likely than do track bettors.

Let r∗ be the revenue-maximizing rebate. Then,

t− r∗

1− t
= (1−Qm) · λm − (1− Pm) (7)

The effective tax paid by off-track bettors, t− r∗, is a fixed fraction of 1− t, the share of the

pot split among winning wagers.

The track’s gambling revenue is:

π(r∗) = t+ (1− t) ·
[√

Pm ·
(
1−Qm

)
−
√
Qm ·

(
1− Pm

)]2

, (8)

where t is the track’s revenue from track bettors, and the second term is the track’s revenue

from off-track bettors, equivalent to (t− r∗)
∑

i x
∗
i . If off-track bettors hold accurate beliefs,

these two terms can instead be interpreted, respectively, as the state-regulated losses sus-

tained by track bettors and their losses in excess of the tax. By assumption, off-track bettors

make zero profits. Hence, the gambling revenues collected by the track equal the total losses

sustained by track bettors, which exceed t. Because arbitrage is competitive, excess losses

incurred by track bettors flow in their entirety to the track.
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The track’s revenues from off-track bettors are increasing in the distance between Pm and

Qm. If Pm = Qm, which occurs only when pi = qi for all i, off-track bettors place zero wagers,

the track offers no rebate, and the track makes no money from off-track bettors. Deviations

between pi and qi, and hence between Pm and Qm, generate bets from arbitrageurs and

profits for the track.

Our model is agnostic about how pi and qi diverge. Nonetheless, it is straightforward to

see how a favorite-longshot bias could arise. Imagine that p1 ≥ p2 ≥ · · · ≥ pN—i.e., relative

to track bettors, off-track bettors are bullish on favorites and bearish on longshots. Further,

assume that track bettors and off-track bettors agree on how to order the outcomes by their

likelihood, even if they disagree on the exact probabilities. That is, q1 ≥ q2 ≥ · · · ≥ qN .

Finally, assume that the beliefs of off-track bettors, pi, are accurate.

First-period wagering generates a favorite-longshot bias. Expected returns, which are

proportional to pi/qi, are largest for favorites and smallest for longshots. Second-period

wagering concentrates on favorites, moderating the favorite-longshot bias. The final odds

are:

O
(2)
i =

1−t
pi
·
[
Pm + (1−Qm) · λm

]
− 1, i ∈ {1, . . . ,m}

1−t
qi
·
[
Pm/λm + (1−Qm)

]
− 1, i ∈ {m+ 1, . . . , N}

(9)

Wagering by off-track bettors on favorites (i ≤ m) lengthens odds on longshots (i > m) and,

in turn, shortens odds for some favorites—in particular, those for which pi/qi > Pm + (1 −
Qm)λm. At the track, the expected value of a $1 bet, given accurate beliefs pi, is:

Etrack[xi = 1] = (1− t) ·

Pm + (1−Qm) · λm, i ∈ {1, . . . ,m}
pi
qi
·
[
Pm/λm + (1−Qm)

]
, i ∈ {m+ 1, . . . , N}

(10)

Second-period betting equalizes returns for the first m favorites. A $1 wager on any of the

first m outcomes returns $1 to off-track bettors and $1 − r∗ at the track. Wagers on less

likely outcomes perform worse, which follows from (4). The favorite-longshot bias manifests

as a piecewise relationship similar to that observed in Figure 2, with the kink located at the

odds of outcome m. For outcomes with shorter odds (i.e., i < m), expected returns are flat.

For outcomes with longer odds (i.e., i > m), expected returns are decreasing.
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5.3 Estimation

Beliefs in the win pool are derived from the morning-line odds. We infer the beliefs of

track bettors by assuming that they take the morning-line odds at face value—i.e, as a

well-calibrated, or unbiased, prediction of the final parimutuel odds in the win pool were all

bettors risk neutral like themselves. Specifically, track bettors form beliefs qi,win as in (1)—

i.e., by inverting the morning lines and then normalizing by race such that
∑

i∈R qi,win = 1.20

In contrast, we imbue off-track bettors with well-calibrated beliefs, pi,win. Specifically, we

non-parametrically estimate the track-specific rates at which horses associated with similar

naive beliefs, qi,win, actually win the race, as shown in Figure 8 and described in Footnote 19.

We then normalize these estimates by race such that
∑

i∈R pi,win = 1.21 Whereas track

bettors assume that the morning lines imply well-calibrated beliefs, off-track bettors ensure

that their beliefs are well calibrated.

We use beliefs in the win pool to construct beliefs in other pools. To do so, we assume

that the probability of a horse finishing in nth place is simply its probability of winning the

race, divided by the cumulative winning probability among horses that did not finish in the

first n− 1 positions (Harville, 1973). The race for second place, for instance, can be thought

of as a race within a race in which the first-place finisher does not participate.

We first consider place and show wagers, which pay out if the chosen horse finishes in the

top 2 or 3 positions, respectively. The probability of a place wager on horse i paying out is:

pi,place = pi,win +
∑
j 6=i

pj,win ·
pi,win

1− pj,win

where the second term is the probability of horse i finishing second. Beliefs for track bettors,

qi,place, can be calculated in a corresponding manner. Similarly, the probability of a show

wager on horse i paying out is:

pi,show = pi,place +
∑
j 6=i

∑
k 6=(i,j)

pj,win ·
pk,win

1− pj,win

· pi,win

1− pj,win − pk,win

where the second term is the probability of horse i finishing third.

We also consider a range of exotic wagers. Bettors may wager on the order of the first

20In the win pool, track bettors need not form these beliefs explicitly. They behave as if maximizing
expected value given qi,win by simply wagering on the horse with the highest ratio of morning-line odds to
current parimutuel odds.

21Because this routine is computationally intensive, we do not repeat it during bootstrapping. Instead,
we use the same estimates of pi (and qi) in every resampled race.

22



n horses in a single race, as in exacta and trifecta pools, which we denote by order-n. The

probability of a sequence, ~v, is:

porder-n(~v) = p~v1,win ×
p~v2,win

1− p~v1,win

× · · · × p~vn,win

1− p~v1,win − · · · − p~vn−1,win

A variant of the exacta (i.e., order-2) is the quinella, in which the bettor predicts the first two

horses regardless of order. Assuming conditional independence, the probability of a quinella

bet on (i, j) paying out is:

pquin(i, j) = pi,win ·
pj,win

1− pi,win

+ pj,win ·
pi,win

1− pj,win

This is equivalent to the probability that an exacta bet on either (i, j) or (j, i) pays out.

Bettors may also wager on the winner of n consecutive races, as in daily-double and pick-

3 pools, which we denote by pick-n. Assuming independence between races, the probability

of a sequence, ~v, is:

ppick-n(~v) =
n∏

i=1

p
(i)
~vi,win

where the superscript indexes the race.

Finding the equilibrium in each pool proceeds according to the model. We order outcomes

by pi/qi, from greatest to smallest. Using a grid search, we find the index m that maximizes

the track’s gambling revenue in (8).22 For each outcome, we calculate the second-period

equilibrium odds (9) and corresponding expected returns (10). In Section 6, we compare

the relationship between equilibrium odds and expected returns predicted by our model to

that observed in the data. For reference, we also depict the favorite-longshot bias implied

by first-period equilibrium odds and expected returns. We then calculate the optimal rebate

from (7), which unlike the takeout is unobserved, and track revenues under the optimal

rebate (8), which we report in Section 7.23

22In other words, we consider the equilibrium under the globally revenue-maximizing rebate. In theory,
many equilibria may exist, one for every locally revenue-maximizing rebate. In the data, 37% of pools have
more than one equilibrium. Multiple equilibria are most common for pick-n bets, occurring in 50% of such
pools. They are least common for win, place, and show bets, occurring in 32% of those pools.

23The expressions for equilibrium quantities are slightly different in place and show pools, where more
than one outcome obtains. Let k denote the number of outcomes that pay out—i.e., k = 2 in place pools and
k = 3 in show pools—with

∑
i qi =

∑
i pi = k. Observe that the parimutuel pays out 1/kth of the post-tax
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5.4 Example

Table 2 illustrates the estimation routine for an example race at Charles Town. T Rex

Express, the favorite with 1/1 morning-line odds, finished with final odds of 3/10 on the

totalizer and in first place on the track. As a result, win bets on T Rex Express paid out a

divided of 30 cents on every dollar wagered. Relative to the morning lines, parimutuel odds

lengthened for the other six horses in the race.

Table 2: Example race at Charles Town.

Odds Beliefs Model predictions in win pool

Name M/L Final qi pi pi/qi O
(1)
i E

(1)
i xi O

(2)
i E

(2)
i

T Rex Express 1/1 0.3 .41 .52 1.26 1.0 1.05 0.6 0.6 0.85
Tribal Heat 2/1 4.0 .27 .30 1.11 2.0 0.91 0.3 1.8 0.85
Dandy Candy 6/1 6.9 .12 .09 0.78 6.0 0.64 0.06 8.3 0.85
Click and Roll 8/1 15.6 .09 .06 0.64 8.0 0.53 0.02 13.5 0.85
Eveatetheapple 20/1 69.3 .04 .01 0.34 20.1 0.28 0 40.6 0.55
Movie Starlet 20/1 25.5 .04 .01 0.34 20.1 0.28 0 40.6 0.55
Boston Banshee 30/1 49.7 .03 .00 0.00 30.2 0.00 0 60.4 0.00

The beliefs ascribed to track bettors, qi, are those that a representative risk-neutral bet-

tor would hold if the final odds coincided with the morning-line odds. Specifically, they are

inversely proportional to the returns implied by the morning-line odds, up to a normaliz-

ing constant, as in (1). By contrast, the beliefs ascribed to off-track bettors, pi, are well

calibrated. In particular, they are proportional to the track-specific rates at which horses

with implied beliefs qi actually win, as shown in Figure 8, up to a normalizing constant. For

Charles Town, beliefs of qi > 0.2 are too pessimistic on average, and beliefs of qi < 0.2 are

too optimistic on average. As a result, pi > qi for the T Rex Express (q = 0.41) and for

Tribal Heat (q = 0.27), and pi < qi for the other 5 horses.

The first-period odds in the win pool, O
(1)
i , reflect betting by risk-neutral track bettors,

given beliefs qi. They diverge from the morning-line odds only because the morning-line odds

do not precisely reflect the takeout, of 17.25%, and the breakage, or the practice of rounding

pot to winning wagers. Hence, second-period odds can be written as:

O
(2)
i =

1− t
k
· 1 +

∑
x

qi/k + xi
− 1,

Modified expressions for the equilibrium odds, expected returns, optimal rebate, and track revenues can be
derived in the same manner.
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down odds to the nearest 10 cents. The first-period odds generate a severe favorite-longshot

bias. The first-period expected returns on a $1 wager—denoted E
(1)
i and taken over pi—are

sharply decreasing in the odds. At first-period odds of 1.0, the p = 0.52 favorite is better

than an even money bet. By contrast, at odds of 20.1, the p = 0.01 longshots return just 28

cents on every dollar wagered—and the p = 0 longshot returns 0 at any odds.

The second-period equilibrium consists of a set of wagers by off-track bettors, xi, such

that these arbitrageurs make zero profits and leave zero profits on the table. In our model,

the track finds the revenue-maximizing equilibrium by setting the optimal rebate, which

determines wagering by off-track bettors. If rebates and wagers by off-track bettors were

observable, we could assess whether these quantities are consistent with our model. Given

that they are unobservable, we instead infer them from the model. Specifically, we sort the

outcomes in descending order of pi/qi, and we find the index m that maximizes the track’s

gambling revenues in (8). In the example above, this ordering coincides with sorting the

horses in ascending order of the morning-line odds—a product of the favorite-longshot bias

embedded in the morning lines. The index m = 4 is optimal, implying that xi > 0 for the

first 4 horses and xi = 0 for the remaining 3.24 Second-period wagers concentrate on the

favorite, and the predicted odds, O
(2)
i , shorten for the first two horses and lengthen for all

others. A less severe favorite-longshot bias remains. For any of the first three horses, the

expected returns on a $1 wager, E
(2)
i , is 85 cents, with the 15-cent expected loss equaling

the optimal rebate. For the longshots, losses are lower than under the first-period odds. A

$1 wager on either of the horses with 20/1 morning lines, for instance, returns 55 cents at

odds of 40.6, or 21 cents more than at odds of 20.1.

In total, off-track bettors wager nearly as much as track bettors in the win pool (i.e.,∑
i xi = 0.97). Whereas the track collects 17 cents from every dollar wagered at the track,

off-track bettors receive a 15-cent rebate, leaving the track with just 2 cents. As a result,

revenues from off-track bettors comprise 12% of the track’s gambling revenues in the win

pool. Arbitrage accounts for larger shares of the track’s gambling revenues in exotic pools.

In the exacta pool, for instance, that share is 21%; in the superfecta pool, it is 41%. The

compound beliefs attached to outcomes in exotic pools amplify differences in beliefs about

win probabilities between track and off-track bettors and hence, taxes from arbitrageurs.

If off-track bettors are more optimistic than track bettors about two favorites, they will

be even more optimistic about an exacta wager on those horses. This logic implies larger

24This set includes 3 horses for which off-track bettors are more pessimistic than track bettors about its
chances. Wagers on the favorite lengthen the odds on other horses, which makes them more appealing.
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divergences between the cumulative beliefs Pm and Qm, as measured by (8). In the win

pool, for example, Pm = 0.97 and Qm = 0.90, whereas in the superfecta pool, Pm > 0.99

and Qm = 0.79.

6 Model predictions

We first evaluate predictions of a simplified version of our model with only track bettors.

Thereafter, we consider predictions from the complete model with off-track bettors. Figure 10

shows a smoothed estimate of the relationship between log predicted odds and predicted

returns for win bets, separately for the simplified version and for the complete model. (All

predicted returns reflect expected returns at the track—i.e., before any rebate.) With only

track bettors, predicted odds approximate the morning-line odds, which embed a favorite-

longshot bias that is more severe than that observed in the data. Hence, the simplified model

overpredicts returns for favorites and underpredicts returns for longshots.

Figure 10: Predicted returns for win bets, with only track bettors and with track and
off-track bettors. The horizontal line marks the average takeout.

Note: Estimated using a local linear regression with a Gaussian kernel. For comparability,
we use the same bandwidth for the predicted estimates as for the observed estimates: the
bandwidth used in Figure 2, of log(1.65).
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Figure 11: Observed (solid line) and predicted (dashed line) returns for win bets with 95%
confidence intervals, by track. The horizontal line marks the state-sanctioned return, or 1−t.

ALB AP AQU BEL BTP CBY

CD CT DED DEL DMR EVD

FG FL GG GP IND LA

LAD LRL MNR MVR PEN PID

PRX RP SA SUN TAM TUP

Note: Estimated using a local linear regression with a Gaussian kernel. For comparability,
we use a common bandwidth for all estimates: the bandwidth used in Figure 2, of log(1.65).
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The inclusion of off-track bettors moderates the favorite-longshot bias, and the resulting

predictions more closely follow observed returns. For a 1/1 favorite, predicted returns exceed

observed returns by just 2 cents, compared to 11 cents in the simplified model. For a 30/1

longshot, observed returns exceed predicted returns by 7 cents, compared to 19 cents in the

simplified model. (All predictions that follow pertain to the complete model.)

We quantify the goodness of the model’s predictions by measuring the expected absolute

deviation, or the average distance between the predicted and observed lines in Figure 10,

with the expectation taken over the distribution of observed odds.25 For a bettor who wagers

randomly, the absolute difference between her returns and those predicted by the model will,

in expectation, equal our expected absolute deviation measure. This measure is just 3.1 (se:

0.5) cents for the complete model. Comparable measures for the representative-agent models

in Figure 3 are larger: 9.2 (0.5) cents for the risk-loving model and 7.0 (0.4) cents for the

probability-weighting model.

Figure 12: Normalized mean returns, observed and predicted.

Our model also captures differences across tracks in the extent of the bias. Figure 11

shows smoothed estimates of the observed and predicted relationships between log odds and

expected returns, separately by track. For most tracks, the predicted relationship approx-

imates the observed relationship. Figure 12 summarizes the model’s fit at each track by

25We estimate this distribution using a kernel density estimator with Silverman’s rule-of-thumb bandwidth,
and we approximate the integral by evaluating the absolute deviation, along with the density of observed
log odds, along a grid of 100 equally spaced points spanning the entire range of the distribution.
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comparing observed and predicted normalized mean returns—i.e., the expected return on a

randomly placed $1 win bet, normalized by the state-sanctioned return, 1− t. Observed and

predicted values are correlated across tracks, at ρ = 0.65, implying that the model predicts

variation in the extent of the favorite-longshot bias across tracks. However, the model gen-

erally overpredicts the extent of the bias, for two reasons. First, our model ignores breakage,

the practice of rounding down odds to the nearest 10 cents, which increases the track’s ef-

fective takeout. Second, the model overpredicts returns for favorites at many tracks, as in

the pooled comparison in Figure 10, for reasons that we discuss at the end of this section.

Figure 13: Observed and predicted returns for place and show bets, with 95% confidence
intervals. The horizontal line marks the average takeout.

(a) Place (b) Show

Note: Estimated using a local linear regression with a Gaussian kernel. The bandwidth,
of log(1.23) for place bets and log(1.29) for show bets, minimizes the leave-one-out mean-
squared error in the observed data.

We evaluate the predictions of our model in other pools as well. Figure 13 shows observed

and predicted returns in place (13a) and show (13b) pools. (Since we observe final odds for

all outcomes only in the win pool, in other pools, we estimate the relationship between

log odds in the win pool and expected returns in the given pool.) A favorite-longshot bias

characterizes returns for both place and show bets. In both pools, favorites with 1/1 win

odds return 90 cents on the dollar, and longshots with 30/1 win odds return about 65 cents on
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the dollar. As in the win pool, the model fit is generally close, with a slight overprediction

for favorites and an underprediction for longshots. In place pools, the expected absolute

deviation is 5.2 (0.3) cents; in show pools, it is 4.1 (0.2) cents.

The final three sets of figures show expected returns on wagers involving two horses—

those in exacta (14), quinella (15), and daily-double (16) pools. In each set of pool-specific

figures, the first figure (a) shows observed returns, the second (b) shows predicted returns,

and the third (c) shows the difference between observed and predicted returns. In all figures,

expected returns are expressed in terms of the log win odds for the first and second horses

chosen. (Since finishing order is irrelevant for quinella wagers, we show expected returns in

terms of log win odds for the relative longshot and relative favorite.)26

For exotic bets, the favorite-longshot bias is severe. In expectation, wagering $1 on two

randomly selected horses returns 67 cents in exacta pools, 65 cents in quinella pools, and

68 cents in daily-double pools—incurring far larger losses than the average takeouts of 21,

22, and 20 cents, respectively. Predicted returns from our model approximate observed

returns in each pool, with expected absolute deviations of 4.9 (0.8) cents for exacta bets, 3.0

(1.6) cents for quinella bets, and 6.2 (0.7) cents for daily-double bets. For exacta bets, the

deviation pattern is similar to that for bets on a single horse, with the model overpredicting

returns for favorites and underpredicting returns for longshots; for quinella and daily-double

bets, the deviation patterns are more idiosyncratic.

Our model largely hits the mark, but its misses are generally of the same pattern—

overpredicting returns for favorites and underpredicting returns for longshots. We suspect

that this stems from the coarseness of the beliefs assigned to off-track bettors. In our model,

the beliefs of off-track bettors derive from a single attribute: the morning-line odds. Hence,

every horse at a given track with the same morning lines is allocated the same probabil-

ity of winning the race, before normalization. In practice, sophisticated bettors use other

information, such as past performance, to form higher resolution beliefs. This disconnect

is most consequential for favorites with morning-line odds at a censoring threshold. From

the morning lines, it is unclear whether such a favorite is merely favored, or is Secretariat.

Presumably, sophisticated bettors know the difference. If off-track bettors in our model were

similarly discerning, they would wager even greater sums on favorites, and the model would

predict lower returns for favorites and higher returns for longshots.

The poor resolution of the beliefs held by off-track bettors is evident in the predicted odds.

26Each figure is estimated using a local linear regression with a bivariate Gaussian kernel. In each pool,
the bandwidth pair minimizes the leave-one-out mean-squared error in the observed data (a).
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Figure 14: Exacta: expected return on $1 wager.

(a) Observed (b) Predicted (c) Observed − predicted

Figure 15: Quinella: expected return on $1 wager.

(a) Observed (b) Predicted (c) Observed − predicted

Figure 16: Daily double: expected return on $1 wager.

(a) Observed (b) Predicted (c) Observed − predicted
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Figure 17: Distributions of morning-line odds (bars), final odds (solid line), and predicted
odds (dashed line) for win bets.

Note: Distributions of (log) parimutuel odds—both observed and predicted—estimated using
a kernel density estimator with a Gaussian kernel and Silverman’s rule of thumb bandwidth
as calculated using the observed data.

Figure 17 compares the distributions of morning-line odds (bars), observed parimutuel odds

(solid line), and predicted parimutuel odds (dashed line). The predicted odds exhibit more

variance than the morning-line odds but less variance than the observed odds. One corrective

would be to use a larger set of variables, along with a more complicated estimation routine,

to assign off-track bettors more refined beliefs. Doing so would likely make the predicted

odds more extreme, as in the observed distribution, and the predicted favorite-longshot bias

less steep, as in the observed relationship. But we are loathe to complicate matters in search

of a marginal increase in accuracy. The virtue of our model is not that it makes perfect

predictions, but that it gets close without sacrificing parsimony.

7 Track revenues

Our model also predicts the track’s gambling revenues, separately from track and off-track

bettors. Predicted revenues from off-track bettors reflect arbitrage opportunities created by

distortion in the morning-line odds. Importantly, they do not reflect revenues generated by
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Figure 18: The distribution of optimal rebates across races (box plot) and the share of
gambling revenues from off-track bettors (line), along with the takeout (star), by track and
wager type. In the box plots, the box represents the interquartile range, and plus signs
denote outliers.
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PRX RP SA SUN TAM TUP
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other means of deception, by other manners of arbitrage, or from off-track bettors that engage

in behaviors other than arbitrage, such as speculation. In this sense, they are estimates of a

quantity that cannot be directly observed.

How profitable is deception? Figure 18 shows the model’s predictions for each wager type

at each track, displaying the distribution of optimal rebates across races (box plot) and the

share of gambling revenues from off-track bettors (line), along with the takeout (star). At

tracks that promulgate well-calibrated morning-line odds (e.g., PRX), rebates concentrate

near the takeout, and the track profits minimally, if at all, from taxing arbitrage. At other

tracks, tax rates for off-track bettors are larger, and arbitrage generates more revenue for

the track. Miscalibration in the morning-line odds creates arbitrage opportunities, reducing

the rebate required to entice off-track bettors into the market. In some cases, arbitrage

opportunities are so enticing that optimal rebates are negative—i.e., off-track bettors pay a

surcharge.

Figure 18 also shows that exotic wagers are relatively more profitable for the track. This

occurs because compound wagers, in which the bettor predicts the finishing order or the

winners of consecutive races, amplify differences between track and off-track bettors in their

beliefs for win wagers, as illustrated at the end of Section 5. Given that exotic pools comprise

the majority of wagers at every track (Table 1), the vast majority of track revenues from

off-track bettors come from exotic pools.

Figure 19: Estimated share of gambling revenues from off-track bettors, by track.

Figure 19 aggregates the predicted share of revenues from off-track bettors by track,
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weighting each pool by the total amount wagered.27 We estimate that as much as 10% of

gambling revenues are generated by deception in the morning-line odds. Cross-track variation

is large, however, with a handful of tracks profiting minimally, if at all, from deception.

These estimates may underestimate or overestimate their true values. For instance, off-

track bettors likely have more refined beliefs than those we assign them, as discussed at

the end of Section 6. If so, the predictions in Figure 19 are probably underestimates, as

greater resolution in pi generally increases the deviation between Pm and Qm. On the other

hand, our assumption of perfect competition among arbitrageurs, if wrong, may lead to

overestimation. If we instead assume that competition among off-track bettors is imperfect,

or if we model them as risk averse, then off-track bettors will wager less, and the track will

make less money. (It is also possible that off-track bettors collectively make negative profits,

in which case our assumption of perfect competition leads to underestimation.) A second

reason for overestimation is that we model the track as finding the optimal rebate in each

betting pool, even when the optimal rebate is negative. In practice, tracks may not be so

sophisticated, nor are they allowed to charge off-track bettors more than punters pay at the

track.

8 Discussion

In recent years, a number of phenomena with long-standing behavioral explanations have

been shown to be consistent with standard models (e.g., Farber, 2015; Miller and Sanjurjo,

Forthcoming). This paper shows that the favorite-longshot bias—commonly cited as evidence

of irrational behavior in markets (Barberis, 2013; Thaler, 2015)—is better explained by a

model with rational, if uninformed, agents.

In our model, the track deceives uninformed bettors so as to profit by taxing arbitrageurs.

The morning-line odds facilitate this deception. Billed as the track’s prediction of the final

parimutuel odds, the morning lines at most tracks instead embed a favorite-longshot bias.

Uninformed bettors take the morning lines at face value and overbet longshots, thereby

making favorites attractive to informed arbitrageurs. At the last minute, arbitrageurs bet

on favorites, which moderates the favorite-longshot bias and transforms excess losses by

27For win, place, and show pools, the race chart lists the combined amount wagered rather than the
pool-specific amounts. We assume that the listed total was wagered entirely in the win pool, reflecting
the unpopularity of place and show bets. At the Santa Anita race track, for example, nearly two in three
dollars wagered in the win, place, or show pools is wagered in the win pool (https://lat.ms/2il84x7). The
model’s predictions are generally similar across the three pools, as shown in Figure 18, and the estimates in
Figure 19 are meaningfully unchanged when dividing the pot equally among the win, place, and show pools.
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uninformed bettors into additional profit for the track.

Critics have noted that behavioral economics focuses on making economic models more

psychologically realistic, rather than making them more predictive (e.g., Pesendorfer, 2006).

Our approach prioritizes predictive accuracy over descriptive accuracy. We include features

of the market that help make good predictions, namely the morning-line odds and the distinc-

tion between track and off-track bettors, and we exclude features that might make the model

more realistic though not necessarily more predictive, such as non-standard preferences and

psychological biases. The merits are twofold. First, modeling agents as gullible rather than

behavioral makes our model parsimonious. Whereas alternatives to expected utility max-

imization typically involve parametric assumptions, gullible agents make straightforward

inferences from observable information. Second, the model predicts the favorite-longshot

bias observed in the data. We run a figurative horse race between speculative, biased, and

gullible agents, and we find that gullibility wins out.

Our model is designed to show how deceptive morning-line odds can generate a favorite-

longshot bias, not how the morning lines are themselves generated. As a result, the model

cannot say why the morning lines embed a favorite-longshot bias, rather than the reverse

or some other pattern.28 An extension might allow for the direct utility that track bettors

receive from gambling to vary with their beliefs. Promulgating optimistic predictions for

longshots could thus be rationalized by a desire among track bettors to believe, for instance,

that the underdog can prevail or that the race will be competitive. If so, one implication

is that tracks may distort the morning lines for reasons other than—and perhaps without

awareness of—the resulting profits from taxing arbitrage.

Finally, our results inform a policy debate about how best to regulate gambling, one

that has seen renewed interest following the Supreme Court’s 2018 ruling allowing states to

legalize wagering on sports. Gambling is commonly rationalized by way of prospect theory.

Wagers that lose money on average are appealing to agents who are risk loving in the domain

of losses (Thaler and Ziemba, 1988; Thaler and Johnson, 1990) or who overweight small

probabilities (Barberis, 2012). Both of these explanations imply that gambling is a mistake.

The gambler will later regret the wagers she placed with the hope of getting back to even, or

those she placed with a biased perception of the odds. Under this logic, welfare-enhancing

interventions target gamblers, for instance by “nudging” them to gamble less. Our results

28A reverse favorite-longshot bias, in which returns for longshots exceed those for favorites, characterizes
bookmaker odds for spread bets in Major League Baseball (Woodland and Woodland, 1994) and the National
Football League (Levitt, 2004). NFL bettors overbet favorites even when they are told (truthfully) that the
lines have been exaggerated, and the favorite is unlikely to cover the spread (Simmons et al., 2010).
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show that gambling at the track is better rationalized by the enjoyment of gambling (Conlisk,

1993).29 In our model, track bettors happily incur losses equal to the state-regulated tax.

Presumably, they would be unhappy to learn that they are incurring additional losses as a

result of being deceived by the track. Under this logic, welfare-enhancing regulations target

deception by market makers.
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A Proofs

The equilibrium conditions on the expected returns to off-track bettors (2)—namely that

Eoff-track[xi] = xi for xi > 0, and Eoff-track[xi] ≤ xi for xi = 0—imply an experession for∑
x, the total amount wagered by off-track bettors. Let Q+ ≡

∑
i qi · 1{xi > 0} and

P+ =
∑

i pi · 1{xi > 0}, the subjective probability—held by track and off-track bettors,

respectively—of an outcome that attracts positive bets by off-track bettors. Then,

∑
x =

(1− t) · P+ − (1− r) ·Q+

(1− r)− (1− t) · P+

Substituting this expression into the track’s profit function (3) and solving the first-order

condition yields the profit-maximizing rebate, r∗:

r∗ = 1− (1− t) ·
[
P+ +

√
P+ · (1− P+) · (1−Q+)

Q+

]
Substituting

∑
x and r∗ into the first equilibrium condition—i.e., Eoff-track[xi] = xi for xi >

0—and solving for xi yields:

xi = pi ·

√
Q+ ·

(
1−Q+

)
P+ ·

(
1− P+

) − qi, ∀i s.t. xi > 0

Hence, xi > 0 if and only if: (
pi
qi

)2

>
P+ ·

(
1− P+

)
Q+ ·

(
1−Q+

)
Without loss of generality, reorder the outcome indices i such that:

p1

q1

≥ p2

q2

≥ · · · ≥ pi
qi
≥ pi+1

qi+1

≥ · · · ≥ pN
qN

As a result, Q+ ≡ Qm =
∑m

i=1 qi, where xi > 0 for i ≤ m and xi = 0 for m < i ≤ N .

Similarly, P+ ≡ Pm =
∑m

i=1 pi.

An equilibrium exists if there exists an index m such that xi > 0 for i ∈ {1, . . . ,m},
and xi = 0 for i ∈ {m + 1, . . . , N}. Given that pi/qi is decreasing in i by construction, this
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equilibrium condition can be written as:

∃m ∈ {1, . . . , N − 1} s.t.

(
pm
qm

)2

>
Pm · (1− Pm)

Qm · (1−Qm)
≥
(
pm+1

qm+1

)2

(11)

We show the existence of an equilibrium when N is large and (11) has a continuous

representation. Let p(m) and q(m) denote continuous probability density functions with

support on [1, N ] such that d
dm

p(m)
q(m)

≤ 0 and p(1)
q(1)

> 1 (and hence, p(N)
q(N)

< 1). In addition,

let P (m) and Q(m) denote the cumulative density functions,
∫ m

1
p(u)du and

∫ m

1
q(u)du,

respectively, where P (1) = Q(1) = 0 and P (N) = Q(N) = 1. The continuous representation

of the (11) is:

∃m ∈ (1, N) s.t.

(
p(m)

q(m)

)2

=
P (m) ·

(
1− P (m)

)
Q(m) ·

(
1−Q(m)

) (12)

Note that because p(m) and q(m) are continuous, both sides of the equality in (12) are also

continuous functions. For brevity, let λ(m)2 equal the right-hand expression in (12).

To show the existence of an equilibrium, it is sufficient to observe that limm→1 λ(m)2 <(
p(1)/q(1)

)2
and limm→N λ(m)2 >

(
p(N)/q(N)

)2
. First, consider the limit as m→ 1:

lim
m→1

λ(m)2 = lim
m→1

p(m) ·
(
1− 2P (m)

)
q(m) ·

(
1− 2Q(m)

) =
p(1)

q(1)
<

(
p(1)

q(1)

)2

,

where the first equality follows from L’Hospital’s rule, and the inequality follows from the

ordering of p(m)/q(m). Now consider the limit as m→ N :

lim
m→N

λ(m)2 = lim
m→N

p(m) ·
(
1− 2P (m)

)
q(m) ·

(
1− 2Q(m)

) =
p(N)

q(N)
>

(
p(N)

q(N)

)2

,

where the inequality again follows from the ordering of p(m)/q(m). These opposing inequal-

ities, along with the continuousness of
(
p(m)/q(m)

)2
and λ(m)2, imply the existence of at

least one fixed point m ∈ (1, N). Thus in the discrete case, an equilibrium exists if pm and

qm are approximately continuous in the sense of Starr (1969). Of practical importance, we

note that (11) is satisfied for every observed pair of p and q vectors.
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