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Abstract

In this paper, we develop a model in which investors possess private information

on both the expected level of a stock’s payo§s and their risk. These investors may

trade in both the stock and a derivative whose payo§ is a function of the riskiness

of the stock. The model suggests that risk uncertainty a§ects how investors trade

on their mean information, and ties the equity risk premium to the derivative price.

Unlike prior rational expectation models with derivatives, the derivative price serves a

valuable informational role because of the fact that investors possess risk information.
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1 Introduction

There is widespread interest amongst academics, practitioners, and regulators regarding the

drivers of trading volume and stock returns when investors have diverse private information.

Since Grossman and Stiglitz (1980), rational expectations models with noise traders have

served as a foundation for understanding how markets aggregate investors’ private informa-

tion. These models take a somewhat narrow view on the type of information possessed by

investors, assuming that this information informs them only regarding a security’s expected

future performance.1 However, the abundance of trade in derivative instruments whose val-

ues are directly impacted by the volatility of their underlyings’ payo§s, such as options and

variance swaps, suggests that the information possessed by traders concerns not only average

future payo§s, but also their risk (e.g., Ni, Pan, and Poteshman (2008)). Moreover, many of

the means through which traders acquire private information may lead them to learn about

a stock’s riskiness in addition to its expected performance. For instance, an investor who is

privately aware that a firm has an impending announcement may know that the firm’s stock

price will move, but still face uncertainty regarding the direction of this movement. Similarly,

a party who privately knows the amount of capital available to a firm has a more accurate

assessment of the firm’s future risky investment than an uninformed investor. This raises

the question of how uncertainty over a stock’s risk and asymmetric information regarding

this risk a§ect prices and trading volume in the equity and derivative markets.

In order to address this question, we build a rational expectations model in which traders

are risk averse and face uncertainty regarding both the mean and variance of a stock’s pay-

o§s. These traders possess diverse private information on each of these components, i.e.,

they each possess both “mean” and “risk” information, and trade in equity and a derivative

security whose payo§ is exclusively a function of the riskiness of the stock. In particular, the

1While some prior literature has examined rational expectations models with non-normal distributions,
and hence, signals that lead to updating on moments other than the first, even in these frameworks, signals
order the posterior distributions in the sense of first-order stochastic dominance (e.g., Breon-Drish (2015a),
Vanden (2006)).
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mean information received by investors informs them regarding the first moment, or location

parameter, of the stock’s payo§s, while their risk information informs them regarding the

second moment, or dispersion parameter, of the stock’s payo§s. The rational expectations

literature provides the critical insight that prices aggregate diverse private information, and

hence, o§er traders valuable information. In line with this literature, in addition to taking

into account their private information when determining their portfolios, investors in our

model also take into account the information contained in the equilibrium stock and deriva-

tive prices, which are each a§ected by noise trade. In practice, it appears that both equity

and derivative prices provide useful information to investors. In particular, implied volatility

is frequently used as a measure of the market’s assessment of the return variance, suggest-

ing that option prices aggregate investors’ information regarding future volatility. This is

di¢cult to reconcile with existing theoretical models of derivative trade (Brennan and Cao

(1998), Vanden (2008)), which find that derivative prices serve no informational role, but

model the stock’s risk as common knowledge. In our model, both the derivative and equity

prices provide investors with valuable information.

Introducing risk uncertainty and private risk information in a setting with both an equity

and derivative leads to two foundational results. First, the presence of uncertainty over the

stock’s risk a§ects how investors trade on their mean information. Prior models of trade

with known risk demonstrate that investors trade on their beliefs about a stock’s expected

payo§s in equity, but not in derivatives (Brennan and Cao (1998), Cao and Ou-Yang (2008)).

On the other hand, in the face of risk uncertainty, derivatives serve as a form of insurance

against fluctuations in the riskiness of the stock’s payo§s. When the riskiness of the stock’s

payo§s is high, a risk-averse investor who holds an equity position has heightened marginal

utility.2 Therefore, they have a desire to “hedge” against risk uncertainty by purchasing

a security that pays o§ in this state; the derivative security fills precisely this role. As a

result, investors with optimistic mean information not only purchase the equity, but also

2More specifically, an investor with prudent preferences, i.e., those characterized by a utility function
with a positive third derivative, will exhibit this behavior.
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purchase the derivative. Second, the price of the derivative security, which is a§ected by

both private information and noise trade, directly impacts the risk premium in the equity

market. Intuitively, the price of the derivative reflects the cost to hedging the risk uncertainty

induced by a position in the equity. Thus, the price of the equity is directly linked to the

price of the derivative. The main goal of the paper is to analyze these two forces within the

context of a rational expectations equilibrium.

In the model, there is a unique equilibrium in which the derivative price signals only risk

information to investors and the equity price signals only mean information. This equilibrium

possesses several noteworthy features. Again, investors trade on their mean information in

both the stock and the derivative, since the derivative insures against the risk uncertainty

created by speculative positions in the stock. Another way to view this phenomenon is

that by purchasing the derivative, an investor holding equity is wealthier when they face

greater levels of risk, i.e., the distribution of their payo§s exhibits positive skewness, which

they favor. A second feature of the equilibrium is that investors take into account their

risk information when determining their position in the derivative, but not when choosing

their position in the equity. Intuitively, when the investor trades on risk information in the

derivative, the only risk they face is that their information is inaccurate. On the other hand,

if the investor were to trade on risk information in the stock, they would face both the risk

that their information is inaccurate, and the risk that price moves against them. In sum,

there are two components to the investor’s demand in the derivative market: a speculative

risk-information component, and a risk-uncertainty hedging component.

Despite the fact that investors trade on both mean and risk information in the deriva-

tive market, the equilibrium derivative price provides investors with risk information only.

Investors trade on their mean information in the derivative due to their desire to hedge

risk uncertainty, which is an increasing function of their equity demand. While any given

individuals’ equity demand increases in their mean information, the derivative price is a

function of the aggregate equity demand of investors, which is fixed by the market clearing
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condition. Moreover, despite the fact that investors’ equity demands are una§ected by their

individual risk information, the equity price is a function of their average risk information.

Intuitively, investors’ equity demands decrease in the derivative price, as a higher derivative

price makes it costlier to hedge risk uncertainty. Consequently, the equity price decreases in

the derivative price, which is a function of the average risk information received by investors.

The unique equilibrium is the solution to a fixed point problem: investors’ equity demands

are a function of the derivative price, and the derivative price itself is a§ected by investors’

equity demands, which determine their desire to hedge risk uncertainty.

After characterizing the unique equilibrium, we consider four applications of the model.

To begin, we demonstrate how the two foundational results discussed above lead to relation-

ships between price changes and trading volume both within and across the two markets.

The well-known positive relationship between trading volume in stocks and contemporane-

ous stock returns arises in the model (Karpo§ (1987)). Furthermore, trading volume in the

derivative is positively associated with contemporaneous stock returns and trading volumes

in both the stock and derivative are negatively associated with contemporaneous derivative

returns. To understand these results, suppose that the derivative price rises, which occurs

when investors receive information that suggests the stock is risky or when noise traders

purchase the derivative. By increasing the cost to hedging risk uncertainty, this leads the

equity price to fall and reduces the intensity with which investors trade on their mean in-

formation. Hence, the equity price and equity trading volume are positively associated, and

the derivative price and equity trading volume are negatively associated. Furthermore, as

investors trade less intensely on their mean information, their equity positions converge,

leading them to have similar desires to hold the derivative for hedging purposes. This causes

the derivative trading volume to decline, such that trading volume in the derivative market

is negatively associated with the derivative price and positively associated with the equity

price.

Next, we study how dispersion in investors’ beliefs over the mean of the equity’s payo§s
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impacts the equity and derivative prices. Prior noisy rational expectations literature suggests

that holding fixed the quality of investors’ information and their average belief about an

asset’s expected payo§s, belief dispersion has no impact on the asset’s price (Banerjee (2011),

Lambert, Leuz, and Verrecchia (2012)).3 We find that this result no longer holds in the

presence of risk uncertainty. Intuitively, investors are averse to uncertainty over the riskiness

of the stock’s payo§s, which manifests as kurtosis in the distribution of the stock’s payo§s.

This causes an investor’s distaste for risk to grow more rapidly with the size of their demand

for the stock. Dispersion in investors’ equilibrium beliefs leads optimistic investors to hold

large equity positions, and pessimistic investors to hold small equity positions. The increased

risk premium charged by optimistic investors exceeds the decrease in the risk premium

charged by pessimistic investors, decreasing the stock price. Moreover, belief dispersion

increases derivative prices. Investors’ demand to hedge risk uncertainty is convex in their

equity demands. Consequently, the increase in hedging demands of optimistic investors

outweighs the decrease in the hedging demands of pessimistic investors, causing the aggregate

demand curve for the derivative to shift right.

The fact that belief dispersion a§ects stock and derivative prices also has implications

for the relationship between the quality of investors’ private mean information and stock

returns. Prior literature has suggested that when investors’ private information grows more

precise, they face less uncertainty and risk premia shrink. In our model, modifying the

quality of investors’ private mean information has two e§ects on the risk premium, which

can work against one another. First, the standard e§ect is manifest: more precise private

information reduces the risk premium that investors charge. Second, higher quality private

information can cause investors to place more weight on their private signals, increasing the

3The analysis in Banerjee (2011) states that belief dispersion will increase expected returns in a noisy
rational expectations setting. Note, however, that this is only the case when belief dispersion is created
through a change in the precision of investors’ information (see Proposition 1 of his paper). That is, the
analysis he considers is not a ceteris paribus modification of belief dispersion, but rather, a change in the
underlying information structure that creates belief dispersion. In his model, a ceteris paribus modification
of belief dispersion would have no impact on prices: he states, "investor disagreement does not a§ect prices
(while the average beliefs do) (pg. 38)."
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dispersion in their beliefs and hence the stock’s risk premium. In some cases, higher quality

private information reduces the stock price and increases the derivative price.

In the third application, we study how shocks to the derivative price impact the e¢ciency

of the stock price with respect to investors’ mean information. We find that shocks to the

derivative price, such as noise trade in the derivative market or changes in the quality of

investors’ risk information, have spillover e§ects on the stock market. Again, when the

derivative price is high, investors trade less intensely on their mean information. This leads

the stock price to become more sensitive to noise trade, rather than information-related

trade, and heightens investors’ perception of the stock’s riskiness. Moreover, the e§ect of

the original shock to the derivative demand is amplified, as a less e¢cient stock price increases

investors’ belief dispersion, resulting in an even higher derivative price.

Finally, we relate the variance risk premium, i.e., the spread between investors’ expec-

tation of future variance and their pricing of the variance, to returns in the stock market,

dispersion in investors’ equilibrium beliefs, their private information quality, and trading

volume in the stock and derivative markets. Similar to prior literature, we find that there

exists a deterministic relation between the variance risk premium and returns in the equity

market (Bollerslev, Tauchen, and Zhou (2009), Buraschi et al. (2014)). Moreover, dispersion

in investors’ equilibrium beliefs regarding expected future cash flows increases the variance

risk premium. Consequently, this premium increases in prior uncertainty regarding expected

future cash flows, and is non-monotonic in the quality of investors’ mean information. Fi-

nally, we find that the variance risk premium is negatively correlated with trading volume

in the stock and derivative markets.

Related Literature. The primary contribution of our paper is to study a noisy rational

expectations model in which i) investors trade on risk information, and ii) investors trade

on mean information given the presence of risk uncertainty and a derivative market. While

allowing for investors to possess private risk information is itself new to the literature, the

most interesting implications of the model come from considering trading volume in equities
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and derivatives and the formation of a derivative price.

Our model fits into the strand of options pricing literature that takes assets’ cash flows,

rather than returns, as the primitive, and simultaneously derives stock and options returns

in equilibrium (e.g., Brennan and Cao (1998), Cao (1999), Cao and Ou-Yang (2008), Van-

den (2008)). The classic Black-Scholes option pricing model and its extension to stochastic

variance (Heston (1993)) take the distribution of returns as a primitive and derive option

prices under a no-arbitrage condition. This approach is practical given an empirically ob-

served return distribution, but, in the words of Vanden (2008), “does very little to enhance

our understanding of how the economy’s primitives, such as information quality, a§ect the

options market.” In particular, taking returns as exogenous is limiting as the distribution of

returns is a§ected by the presence of an option when investors have private information over

cash flow risk.4

Brennan and Cao (1998), Cao (1999), and Vanden (2008) also study noisy rational ex-

pectations models in which investors may trade in a stock or options written on the stock.

In these models, options complete the market when investors have heterogenous information

quality. Investors take deterministic positions in the option based on the precision of their

information relative to the average precision of all investors, and hence, option prices provide

no information to investors. Chabakauri, Yuan, and Zachariadis (2016) study a rational ex-

pectations model in which investors may trade in a full set of contigent claims, also finding

that derivative securities are informationally irrelevant. Buraschi and Jiltsov (2006) build a

continuous time model in which investors have di§erences of opinion over the distribution

of new information concerning the drift in an asset’s dividend process. These investors can

trade in the stock and options; they show that di§erences of opinion can impact the option

prices. Back (1993), Biais and Hillion (1994), and Easley, O’Hara, and Srinivas (1998) study

strategic trade in stock and options. Oehmke and Zawadowski (2015) analyze a model in

4The option is not a redundant security as in Black and Scholes (1973) for two reasons: i) its price
serves as a signal of investors’ information over cash flow risk and ii) since risk is uncertain, it serves to help
complete the market.
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which investors trade in derivatives due to di§erential trading costs, and analyze the e§ect

of the derivative’s introduction on the price of the underlying. In all of these models, in-

vestors’ information orders their posteriors in the sense of first-order stochastic dominance,

suggesting that they possess directional, rather than risk information.

Other models o§er non-information related reasoning for why investors trade derivatives.

Detemple and Selden (1991) show that in an incomplete market setting, investors who agree

to disagree over an asset’s risk trade in derivatives. Our work extends this intuition to a

rational expectations setting. In a similar vein, Cao and Ou-Yang (2008) develop a model in

which investors agree to disagree about the mean and precision of a signal, and may trade in a

stock or an option. They find that disagreements about the mean lead to stock but not option

trade and disagreements over precision lead to trade in both markets, contrasting with our

model. This di§erence may be explained by the fact that in their model, the variance of cash

flows is known and information is symmetric. This eliminates updating from option prices and

the hedging component of investors’ option demands, such that derivatives serve a di§erent

purpose. Leland (1980) shows that an investor’s derivative demand is a function of how their

risk aversion shifts with their wealth. Franke, Stapleton, and Subrahmanyam (1998) studies

a setting in which investors face unhedgable background risks and finds that investors facing

high background risk purchase derivatives from investors facing low background risk.

Derivative trade is often thought of as stemming from transaction costs and trading

restriction-based motives (e.g., Anthony (1988), Diamond and Verrecchia (1987)). These

motives are absent from our model, in which the derivative’s value is a function only of the

magnitude, and not the direction, of the underlying’s return. Ni, Pan, and Poteshman (2008)

develop an empirical measure of volatility-based trading in options markets and control for

options trade relating to future changes in stock prices, and also examine option trade related

specifically to straddles; this roughly captures derivative trade as we model it.

From a technical perspective, we borrow many of the techniques from Breon-Drish
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(2015a,b).5 Modeling the payo§ to a derivative requires a distribution that is bounded

below by zero. This requires a deviation from conventional noisy rational expectations mod-

els, which assume that payo§s are normally distributed and hence have no lower bound. The

techniques of Breon-Drish (2015a,b) enable us to prove the existence and uniqueness and

find the structure of an equilibrium in the derivative market.

2 Model

2.1 Assumptions

The model that we analyze is a one-period model of trade. We assume that the economy

is populated by a unit continuum of informed investors indexed on [0, 1] with CARA utility

u (W ) = −e−
W
τ . There are three securities in the economy. The first security is a risk free

asset with payo§ normalized to one, which is in unlimited supply. The second is a risky

asset (the stock, or equity) that pays o§ a one time dividend of x̃ at the end of the period,

with per capita supply of 0; a non-zero supply is absorbed into noise trade. We refer to

the ith trader’s position in the stock as DSi. In order for investors to possess information

on both the stock’s expected payo§s and its riskiness, both the mean and variance of its

payo§s must be random. To accomplish this, we assume that x̃ has two components, one a

location parameter with known variance, and a stochastic exposure to a random factor f̃ .

In particular, we assume that:

x̃ = µ̃+ Ṽ
1
2 f̃

where µ̃ ∼ N
(
m, σ2µ

)

and f̃ ∼ N (0, 1)

5Note the framework of Breon-Drish (2015) itself does not encompass the present model, in the sense
that it does not allow for signals that concern only the riskiness of future cash flows. The reason is that
the signal in his model orders the distribution in the sense of the monotone likelihood ratio property, and a
fortiori, first order stochastic dominance.
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where µ̃, Ṽ , and f̃ are mutually independent random variables. This implies that fixing µ̃

and Ṽ , x̃ is normally distributed with mean µ̃ and variance Ṽ , that is, x̃|µ̃, Ṽ ∼ N
(
µ̃, Ṽ

)
.

We allow Ṽ to have any distribution with a non-negative support Υ. By setting up the model

in this fashion, we can clearly label private information regarding µ̃ as information regarding

expected payo§s, and private information regarding Ṽ as risk information. All informed

traders receive an information signal regarding µ̃ and an information signal regarding Ṽ ,6

and these traders rationally use the stock and derivative prices as additional signals. In

particular, the “mean” signal received by investor i is equal to '̃i = µ̃+ "̃i and "̃i ∼ N (0,σ2").

The “risk” signal received by investor i is equal to η̃i = Ṽ + ẽi where ẽi ∼ N (0,σ2e). The

noise terms "̃i, ẽi are assumed independent of the other variables in the model.

The third and final security traded by investors has payo§s equal to the stochastic vari-

ance, Ṽ ,7 and has a per capita supply of zero. We refer to this security as the derivative

and refer to the ith trader’s position in the derivative as DDi. This approach to modeling

the derivative deviates from prior literature, which studies derivatives with option-like pay-

o§s, or payo§s that are a quadratic or logarithmic function of returns (Brennan and Cao

(1998), Vanden (2008), Cao and Ou-Yang (2008)).8 There are two ways to interpreting a

security which pays o§ equal to the underlying variance of the stock’s payo§s. First, it may

be viewed as a mathematical approximation to an option. In particular, the payo§ to a call

or put option, or straddle, in expectation increases in the riskiness of the stock’s payo§s, Ṽ ,

but, even for a fixed level of risk, this payo§ still varies. Hence, by modeling the derivative’s

payo§ as simply equal to Ṽ , we abstract from this second layer of uncertainty, but still

capture the essential element that the expected payout to the derivative is greater when the

variance of the stock’s payo§s is larger. Second, in continuous time, the underlying stochas-

tic variance in the process generating price would manifest deterministically as variance in

6The model is easily extended to the case in which some traders do not receive a variance signal. However,
as we discuss later, all traders must have homogenous information precision regarding µ̃ to ensure tractability.

7It is simple to accomodate the case in which ỹ also pays out the fixed component of the unconditional
variance of x̃, σ2µ, but this adds unnecessary complexity to the expressions for price and demand.

8This approach is intractable in the case in which Ṽ is stochastic.
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price. Consequently, a variance swap, which pays o§ equal to the realized variance of prices,

pays o§ exactly equal to the underlying stochastic variance. As a result, the derivative may

heuristically be viewed as a variance swap.9

In order to close the model and prevent the stock price from fully revealing investors’

mean information, we introduce noise traders in the two markets. First, we assume that

there is a unit continuum of noise traders in the equity market whose aggregate demand is

Z̃S ∼ N (z̄S,σ2S) where z̄S ≤ 0 and is independent of the other variables in the model. This

ensures that the stock price reflects investors’ private information only with noise. Next, we

assume that these traders rationally take positions in the derivative market given their equity

demand Z̃S; we refer to these traders’ demand in the derivative as DZ . In the absence of

this assumption, the derivative price provides informs the investors regarding Z̃2S, rendering

the model intractable; the reason for this will become clear in the next section. It can be

justified by viewing noise trade in the stock market as arising from liquidity traders who

take a position in the equity and adjust their derivative demands accordingly. For simplicity

of exposition, we treat the noise traders as symmetric to informed traders when trading in

the derivative, by endowing them with risk signals η̃Zi = Ṽ + ẽZi where ẽZi ∼ N (0,σ2e) is

independent of all other variables in the model.10

Finally, we assume that there are additional noise traders in the derivative market whose

aggregate demand is Z̃D ∼ N (0,σ2D), where Z̃D is independent of the other variables in

the model. Given that noise traders in the stock market rationally take positions in the

derivative, if there were not an additional source of noise in the derivative market, the

9We note that the model accomodates the case in which the derivative has both “delta” and “vega.”
First, note these options can be roughly approximated by taking a position in both the equity and derivative
in my model. Second, suppose that the derivative payo§ was instead linear in x̃ as well as Ṽ , i.e., its pay o§
was αx̃+βṼ for some α 2 < and β > 0. In this case, the expression for the equity price would be materially
unchanged as a result of the fact that the derivative is, on average, in zero net supply. However, trading
volume in the asset would be a function of investors’ risk information, as they would trade in the asset to
neutralize the delta provided by a position in the derivative. The derivative price would equal αPS + βPD
where PS and PD are the equity and derivative prices in my model, respectively.
10Relaxing this assumption would modify the derivative price, as there would be two types of investors’ in

the derivative who have information of varying precisions. However, allowing for heterogenous precisions in
the derivative market would have no impact on the general tenure of the results, but would add complexity
to the price expression (see Breon-Drish (2015b)).
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derivative price would perfectly reveal investors’ information regarding Ṽ .11

2.2 Equilibrium

We begin by characterizing a rational expectations equilibrium. Let PD equal the equilibrium

price of the derivative, and PS the equilibrium price of the stock. Let Φi = {'̃i, η̃i, PS, PD}

represent investor i’s information set. We start with the standard definition of a rational

expectations equilibrium:

Definition 1 A rational expectations equilibrium is a pair of functions PS, PD such that

investors choose their demands to maximize their utility conditional on their information

set:

(DSi (Φi) , DDi (Φi)) 2 arg max
dSi,dDi

E
h
− exp

(
−τ−1

(
dSi (x̃− PS) + dDi

(
Ṽ − PD

)))
|Φi
i

and, in all states, markets clear:

Z 1

0

DSi (Φi) di = −Z̃S
Z 1

0

DDi (Φi) di+DZ = −Z̃D.

Note that given the equilibrium definition, the investors’ demands in the stock and deriv-

ative are allowed to depend on both the derivative price and the stock price. As a result, it

is possible that the stock and derivative prices each contain information on both µ̃ and Ṽ .

We specialize slightly further in the equilibria we consider. In particular, we consider only

equilibria in which the derivative price does not reveal any information incremental to the

stock price regarding µ̃ and the stock price does not reveal any information incremental to

the derivative price regarding Ṽ . Technically, we take the following approach. Let FPS (·)

represent the distribution function of PS and FPD (·) represent the distribution function of
11Similar assumptions appear in Back (1993) and Easley, O’Hara, and Srinivas (1998).
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PD. We conjecture an equilibrium in which the derivative price is conditionally independent

of µ̃ given the stock price, i.e., FPD (·|PS, µ̃) = FPD (·|PS), and the stock price is condition-

ally independent of Ṽ given the derivative price, i.e., FPS
(
·|PD, Ṽ

)
= FPS (·|PD). This

implies that investors use the stock price to update on expected payo§s and the derivative

price to update on the riskiness of payo§s. We then show that given such a conjecture, the

equilibrium stock price and derivative price indeed satisfy FPD (·|PS, µ̃) = FPD (·|PS) and

FPS

(
·|PD, Ṽ

)
= FPS (·|PD), demonstrating the existence of such an equilibrium. In fact,

one needs only to conjecture that one of these two properties holds, and the other will follow

in equilibrium. However, we have not been able to rule out the possibility of other equilibria.

We proceed in three steps: (i) we solve for equity demands and the equity price for

a fixed derivative price and derivative demands; (ii) we solve for the derivative demands

and derivative price for a fixed equity price and equity demands; (iii) we combine the two

markets to show that a rational expectations equilibrium solves a fixed point problem that

has a unique solution.

Beginning with the stock market, we follow the standard procedure of conjecturing a

linear equilibrium:

PS = α̃0 + αµµ̃+ αzZ̃S (1)

where, by the conjecture that FPS
(
·|PD, Ṽ

)
= FPS (·|PD), α̃0 may depend upon Ṽ and Z̃D

only through PD, and hence, is known to investors.12 The following proposition summarizes

the equilibrium equity demands and equity price, for a given derivative price PD. In the

appendix, we derive explicit expressions for α0, αµ, and αz.

Proposition 1 The investors’ equity demands and the unique equilibrium equity price given
12One may use the technique of Breon-Drish (2015b) to show that this conjectured linear equilibrium in

the asset market is indeed unique amongst the class of equilibria in which the price function is continuous
and satisfies a technical condition. We omit the formal argument here for sake of brevity.
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a derivative price PD satisfy:

DSi = τ
E (x̃|Φi)− PS
PD + V ar (µ̃|Φi)

and (2)

PS =

Z 1

0

E (x̃|Φi) di+ τ−1Z̃S (PD + V ar (µ̃|Φi)) .

To understand this expression, recall that in the classical mean-variance framework with

known variance and no derivative security, investors’ demands equal τ E(x̃|Φi)−PS
V ar(x̃|Φi)

. In the

present setting, we again have a numerator equal to the expected payo§ minus price. How-

ever, the denominator, which captures the investor’s adjustment for risk, is now modified as

there are two components of risk when trading in the stock: that of the uncertain mean, µ̃,

and that of the stochastic variance term, Ṽ
1
2 f̃ . As is the case in the classical framework,

the variance of the uncertain mean component is added to the denominator since it follows

a normal distribution. On the other hand, to account for the riskiness of the component of

payo§s with an uncertain variance, Ṽ
1
2 f̃ , the denominator includes the price of the derivative

security PD, which in general is not simply equal to V ar
(
Ṽ

1
2 f̃
)
, since Ṽ

1
2 f̃ is not normally

distributed.

To provide an intuition for why investors discount the risk associated with V ar
(
Ṽ

1
2 f̃
)

at the price of the derivative security, consider investor i’s expected utility conditional on Ṽ

when their demands are (DSi, DDi):

E
h
− exp

(
−τ−1

(
DSi (x̃− PS) +DDi

(
Ṽ − PD

)))
|Φi, Ṽ

i
(3)

= − exp
h
−τ−1DSi (E (µ̃|Φi)− PS)− τ−1DDi

(
Ṽ − PD

)
+ τ−1D2

Si

(
V ar (µ̃|Φi) + Ṽ

)i
.(4)

Notice that the investor’s expected utility is decreasing in a linear combination of the payo§

to their derivative position, DDi

(
Ṽ − PD

)
, and the riskiness of the equity position, D2

SiṼ .

As a result, the exposure to Ṽ created by a position in the stock, τ−1D2
SiṼ can e§ectively

be hedged by taking a position in the derivative, which comes at the price of PD. When PD
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rises, this exposure becomes costlier to hedge, and hence, investors will treat the stock as

though it were riskier. The proof provided in the appendix demonstrates that this intuition

continues to hold upon taking the expectation over Ṽ .

Note that the one-for-one relationship between the derivative and equity prices implies

that even when driven by noise trade, increases in the derivative price lead to an increase

in the equity risk premium. This e§ect only arises due to investors’ preference for higher

moments in their payo§ distributions. In particular, since the investors’ utility functions

have a positive third derivative, they prefer skewed payo§ distributions (Eeckhoudt and

Schlesinger (2006)). By purchasing the derivative, an equity investor has a greater level of

wealth when they face more risk, creating skewness in their payo§ distribution.13 If the

investors had mean-variance preferences, rather than CARA utility, their demands for the

stock would be independent of the derivative price, because the stock and derivative payo§s

have a covariance of zero: Cov
(
x̃, Ṽ

)
= 0, and the risk premium in the equity market would

simply equal the expected variance.

Importantly, the equity demands DSi are not directly a function of investors’ risk signals

η̃i, given the conjecture that FPD (·|PS, µ̃) = FPD (·|PS). Thus, despite the fact that investors’

risk signals provide them with information regarding the riskiness of the stock, they choose

not to take into account these signals η̃i when trading in the stock market. As a result, the

conjecture that the stock price is informationally redundant with respect to Ṽ is verified.

Corollary 1 The stock price is informationally redundant with respect to Ṽ . That is,

FPS

(
·|PD, Ṽ

)
= FPS (·|PD).

This corollary does not imply that the stock market and derivative markets function

independently. Proposition 1 demonstrates that a higher derivative price PD reduces the

intensity with which investors trade on their mean information and reduces the stock price
13See footnote 18 in Eeckhoudt and Schlesinger (2006) for a discussion of why this holds even for CARA

utility, which is generally interpreted as having a preference for risk that is independent of wealth. The
notion of preferences across distributions is distinct from the Arrow-Pratt measure of risk aversion, which
assesses how much an investor is willing to pay to eliminate a risk at any given wealth level. The Arrow-Pratt
measure also takes into account an investor’s marginal utility at a given wealth level.
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PS, as it becomes costlier to hedge the risk uncertainty induced by a position in the stock

market by purchasing the derivative. Instead, the corollary only states that investors’ risk

information can only a§ect the equity price through the price of the derivative, PD.

With the equilibrium in the stock market established, now consider the equilibrium deriv-

ative price for fixed equity demands, {DSi}i2[0,1]. As the distribution of a variance must be

bounded below by zero, the distribution of the payo§ of the derivative cannot be assumed

normal. To make the model as general as possible, we allow for an arbitrary distribution of

Ṽ . In order to derive the rational expectations equilibrium in this general case, we apply

the approach of Breon-Drish (2015b), summarized below.

First, conjecture a generalized linear equilibrium, i.e., one in which price is a monotonic

transformation of a linear function of Ṽ and Z̃D. That is, start by conjecturing PD =

δ
(
l
(
Ṽ , Z̃D

))
where l

(
Ṽ , Z̃D

)
= aṼ + Z̃D for some a 2 < to be determined as part of

the equilibrium and a strictly increasing function δ. Given this conjecture, investors are

able to invert l
(
Ṽ , Z̃D

)
from the derivative price. Due to the fact that the additive error

terms in η̃i and l̃ are normally distributed, η̃i and l̃ are normally distributed conditional on

Ṽ . This implies that the distribution of Ṽ given
(
η̃i, l̃
)
falls into the exponential family of

distributions with the following form:

dFṼ |η̃i,l̃ = exp
n(
k1 (a) η̃i + k2 (a) l̃

)
Ṽ − g

(
k1 (a) η̃i + k2 (a) l̃; a

)o
dH
(
Ṽ ; a

)
(5)

for some functions k1 (a), k2 (a), g (·; a), and H
(
Ṽ , a

)
. When investors have CARA util-

ity and the distribution of payo§s takes this form, their demands are additively separable

in their private signal η̃i, the price signal l̃, and g
0−1 (PD), where g0−1 (·) is a monotonic

function. By examining the market clearing condition, it can be seen that PD indeed takes

the generalized linear form, δ
(
l
(
Ṽ , Z̃D

))
. Moreover, the information content of price is

uniquely determined by the weight that investors place on η̃i relative to the degree of noise
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trade in the economy, implying that there exists a unique generalized linear equilibrium.14

The unique equilibrium may be expressed explicitly, but, in general, it is not available in

closed form. The next proposition summarizes these results.

Proposition 2 Investors’ derivative demands and the unique generalized linear equilibrium

price PD given equity demands {DSi}i2[0,1] satisfy:

DDi = τ

(
1

σ2e
η̃i +

2τ

σ2eσ
2
D

l̃

)
− τg0−1 (PD) +

1

2τ
D2
Si (6)

PD = g0
(
1

2τ

[(
1 +

4τ 2

σ2eσ
2
D

)(
2τ

σ2e
Ṽ + Z̃D

)
+
1

2τ

(Z 1

0

D2
Sidi+ Z̃

2
S

)])
(7)

where

g (ξ) ≡ log
[Z

Υ

exp

{
ξv −

1

2σ2e

(
1 +

τ 2

σ2eσ
2
D

)
v2
}
dFV (v) dv

]

and l̃ ≡ 2τ
σ2e
Ṽ + Z̃D. PD is positive and increasing in Ṽ and Z̃D.

Critically, investors’ derivative demands have a new component that arises due to the

fact that this is a derivative security, revealing an important interaction between the two

markets. In particular, investor i’s demand is increasing in the square of their position in

the stock, 1
2τ
D2
Si, as a result of their desire to hedge risk uncertainty. This implies that both

investors who short the stock and investors who long the stock will hold positions in the

derivative; henceforth, we refer to this component of an investor’s demand for the derivative

as the risk-uncertainty hedging demand. The derivative price depends on investors’ equity

demands through the aggregate hedge of informed traders, plus the hedge from noise traders

in the stock market,
R 1
0
D2
Sidi+ Z̃

2
S.

Although investors’ equity demands a§ect the derivative price, and these demands depend

upon '̃i and Z̃S, the derivative price is nevertheless informationally redundant with respect

14It can be shown that when the distribution of Ṽ is continuous, this generalized linear equilibrium is
the unique equilibrium amongst the class of equilibria in which price is continuous and satisfies dP

dV 6= 0 for
almost every V 2 Υ (see Breon-Drish (2015b) Proposition 2.2). Intuitively, even if investors were to derive a
signal from price that is not linear in Ṽ and Z̃D, their demands for the asset would still be linearly separable
in their private signals and the price signal.
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Figure 1: This figure depicts the interplay between the asset and the derivative market,
given that the derivative insures against fluctuations in Ṽ induced by a position in the asset
market. Trade in the asset a§ects the derivative price through investors’ desire to hedge risk
uncertainty. This in turn, a§ects the asset market through the risk premium associated with
Ṽ

1
2 f̃ .

to µ̃. Substituting the equity price in Proposition 1 into investors’ equity demands, we find

that their equity demands are linear in the di§erence between their private mean signal ('̃i)

and the average mean signal (µ̃). As a result, the aggregate risk-uncertainty hedging demand

of informed investors for the derivative,
R 1
0
D2
Sidi+ Z̃

2
S, is a function only of µ̃ only through

the term
R 1
0
('̃i − µ̃)

2 di. It is easily checked that
R 1
0
('̃i − µ̃)

2 di depends only upon investors

information quality, and is una§ected by µ̃ itself.15 Hence, we have the following result:

Corollary 2 The derivative price is informationally redundant with respect to µ̃. That is,

FPD (·|PS, µ̃) = FPD (·|PS).

Now that the two markets have been examined in isolation, taking the price and demands

in the other market as fixed, we consider both markets in tandem and show that there exists

a unique equilibrium.

Proposition 3 There exists a unique rational expectations equilibrium PS, PD.

15This is somewhat of a knife-edged case that serves to make the model tractable. If investors instead had
heterogenous information precisions regarding µ̃, or if the noise traders in the stock market did not hedge
their positions in the derivative market, the derivative price would reveal information regarding µ̃ or Z̃A,
respectively.
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The existence of a unique equilibrium boils down to a fixed point problem; the nature of

this problem is depicted in Figure 1. Expression 2 shows that the aggregate risk-uncertainty

hedging demand of investors,
R 1
0
D2
Sidi + Z̃

2
S, is a function of the derivative price, PD. In

particular, in the appendix we show that:

Z 1

0

D2
Sidi+ Z̃

2
S =

R 1
0

(
E (µ̃|Φi)−

R 1
0
E (µ̃|Φi) di

)2
di

τ−2 (PD + V ar (µ̃|Φi))
2 . (8)

The numerator of this expression, which captures the variation in investors’ beliefs,
R 1
0

(
E (µ̃|Φi)−

R 1
0
E (µ̃|Φi) di

)2
di, depends upon PD. Expression 2 reveals that the size of

PD determines the sensitivity of the stock price to noise trade, and hence, the precision of the

signal derived from the stock price. Moreover, the denominator is also a direct function of

PD; intuitively, when PD is larger, investors face more risk and are more reluctant to trade on

their information. Simultaneously, the derivative price is itself a function of
R 1
0
D2
Sidi + Z̃

2
S,

such that finding an equilibrium requires solving for a fixed point PD. A unique solution

exists to this fixed point problem. Briefly, the intuition for why this fixed point problem

has a unique solution is that a higher derivative price causes a reduction in the investors’

aggregate hedging demands
R
D2
Sidi + Z̃

2
S, which works against the initial increase in the

derivative price. E§ectively, this implies that the fixed point problem is a contraction.

Before moving on, it is insightful to compare our model to a simpler framework in which

investors trade in two correlated securities, S1 and S2, where S1 pays o§ the sum of two

independent normally distributed components, ρ̃1 + ρ̃2, S2 pays o§ ρ̃2, and investors receive

signals on both ρ̃1 and ρ̃2. Assume further that investors’ information signals are normally

distributed conditional on ρ̃1 and ρ̃2, and that there is independent, normally distributed

noise trade in each security. This setting parallels the present one in that investors trade in

two related securities, and in particular, one of these securities (S2) can be used to hedge a

portion of the risk induced by a position in the other security (S1). Roughly, S1 corresponds

to the equity and S2 corresponds to the derivative in our setting, ρ̃1 corresponds to µ̃ and
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ρ̃2 corresponds to Ṽ
1
2 f̃ . Similar to the results of propositions 1 and 2, it can be verified

that investors trade on information regarding ρ̃1 in S1 and S2, and trade on information

regarding ρ̃2 in S2 only. Intuitively, investors first determine their optimal positions in S1

based on their information regarding ρ̃1, and then adjust their positions in S2 to achieve

optimal exposures to ρ̃2. The investors’ demands for S1 increase linearly in the price of S2,

which captures how much it would cost the investor to replicate the exposure to ρ̃2 resulting

from a position in S1 by trading in S2.

Despite these similarities, there are important discrepancies between this simple setting

and the present model that are critical to the applications we consider. In the simple frame-

work, S2 has a payo§ that directly enters the payo§ of S1, and thus enters the expected

payo§ of S1. On the other hand, the derivative pays o§ Ṽ , which enters the variance of a

position in the equity. As a result, while the price of S2 enters linearly in the demand of an

investor for S1, the price of the derivative appears in the denominator of investors’ demands.

Unlike the simpler setting, this leads the derivative price to a§ect how intensely investors

trade on their mean information and causes the derivative price to enter the equity’s risk

premium. These forces are crucial to the results in sections 3.1, 3.3, and 3.4. Moreover,

investors’ demands for S2 decrease linearly in their demands for S1. In our model, investors’

demands for the derivative increase quadratically in their equity positions, which is crucial

to the results in section 3.2.

Note that allowing for a non-normally distributed payo§ in the derivative market is a nec-

essary component to examining a model with risk-based information, given that any variance

distribution must be bounded below by zero. However, within such a general framework,

some of the well-known results regarding the impact of uncertainty and noise trade on ex-

pected returns may no longer hold. Thus, it is important to distinguish which features of

our results stem from variance uncertainty and the presence of a derivative security, rather

than from the consideration of a generalized distribution. For example, it is possible that

the expected returns to the derivative actually decrease in the degree of uncertainty over the
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derivative’s payo§. This is not a consequence of the interaction between the two markets,

but arises purely due to the fact that the variance is not necessarily normally distributed.

To deal with this concern, we leave many of our comparative statics in terms of shocks to

PD, without specifically specifying which of the underlying parameters lead to this change.

This enables us to focus on the economic forces of the interaction between the two markets,

while leaving the details regarding how uncertainty a§ects prices in the case of a generalized

distribution to future research.

3 Applications

3.1 Trading volume and price changes

In this section, we analyze the relationship between trading volume and price changes within

and across the equity and derivative markets. An empirical literature has documented as-

sociations between stock and option volume and stock returns. For example, a literature

surveyed by Karpo§ (1987) finds that trading volume in the stock market is positively re-

lated to stock returns. Existing rational expectations models have found a relationship

between absolute volume and price changes (Kim and Verrecchia (1991)) and a relationship

between signed volume and price changes (Schneider (2009)). In our model, signed volume

is associated with contemporaneous stock returns, but for a di§erent reason than in prior

literature.16 Innovations to the riskiness of cash flows or noise trade in the derivative market

lead to simultaneous changes in the risk premium charged by investors in the stock market

and in investors’ willingness to trade on their information.

Moreover, our model speaks to the empirical relationship between option volume and

future stock returns (Easley, O’Hara, and Srinivas (1998), Pan and Poteshman (2006)).

Prior literature argues that informed traders first take their information to the derivative

16The relationship between absolute price changes and trading volume in the asset market in my model
is less clear. Unlike Kim and Verrecchia (1991), we assume that investors have homogenous information
quality, such that revisions to the underlying security cause investors to update their beliefs equally.
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market, due to the leverage provided; this leads to a positive association between volume

and future stock returns as the stock market is slow to reflect the information in options

trade. However, the empirical measures of volume used in this literature correspond to trade

in derivatives that respond to directional movements in stock price. Our model suggests

that volume in derivative positions that fluctuate primarily in the absolute movement in

stock price, such as straddles or variance swaps, should be negatively associated with future

returns. Intuitively, innovations to payo§ risk or noise trade in the derivative market raise

the derivative price. This reduces the stock price and decreases investors’ willingness to trade

on their mean information. Moreover, trading volume in the derivative falls as well, since

investors’ desires to hedge risk uncertainty converge as they trade less in the stock. Finally,

the model predicts a relationship between derivative prices and trading volume.

We begin by characterizing trading volume in the two markets. Formally, we examine

trade amongst informed investors, ignoring trade between the noise traders and informed

traders,17 and define trading volume in the stock to equal V olS ≡
R 1
0

∣∣∣DSi −
R 1
0
DSidi

∣∣∣ di

and trading volume in the derivative to equal V olD ≡
R 1
0

∣∣∣DDi −
R 1
0
DDidi

∣∣∣ di. The next

proposition formally characterizes volume in the two markets.

Proposition 4 Trading volume in the stock market is equal to:

V olS = τ

R 1
0

∣∣∣E (µ̃|Φi)−
R 1
0
E (µ̃|Φi) di

∣∣∣ di

PD + V ar (µ̃|Φi)
(9)

and trading volume in the derivative market is equal to:

V olD =

Z 1

0

∣∣∣∣
τ

σ2e

(
η̃i − Ṽ

)
+
1

2τ

(
D2
Si −

Z 1

0

D2
Sidi

)∣∣∣∣ di. (10)

Volume in the stock market is proportional to the absolute dispersion of investors’ beliefs

17Prior noisy rational expectations models which study trading volume e§ectively do the same by assuming
that the noise in the economy takes the form of noisy supply (e.g., Kim and Verrecchia (1991)), or a random
exogenous outside income (Schneider (2009), Wang (1994)).
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about the stock’s expected payo§s,
R 1
0

∣∣∣E (µ̃|Φi)−
R 1
0
E (µ̃|Φi) di

∣∣∣ di. Dispersion in investors’

equilibrium beliefs causes them to take varied positions in the stock, leading to trade. Fur-

thermore, investors’ willingness to trade on their information is disciplined by their assess-

ment of the riskiness of the stock’s payo§s, as measured by τ−1 (PD + V ar (µ̃|Φi)). This

reveals an interaction between the stock and derivative markets: any force that raises the

derivative price also leads to a reduction in trade in the stock market. For instance, a change

in the distribution of Ṽ or in investors’ risk information quality that causes PD to increase,

or an increase in noise trade in the derivative will reduce trade in the stock market.

Next, Proposition 4 shows that derivative trading volume has two components, which we

refer to as the risk information component of volume and risk-uncertainty hedging component

of volume. The risk information component of volume is captured by the term τ
σ2e

(
η̃i − Ṽ

)
,

while the risk-uncertainty hedging component of volume is captured by 1
2τ

(
D2
Si −

R 1
0
D2
Sidi

)
.

Risk information related trade is intuitive, and is driven by the deviation between the signal

received by investor i, η̃i, and the average signal received by investors,
R 1
0
η̃idi = Ṽ . On the

other hand, hedging related trade results from di§erences in investors’ equilibrium beliefs

regarding µ̃. Such di§erences in beliefs lead investors to hold disparate positions in the stock.

Investors who hold large positions in the stock hedge the resulting variance uncertainty by

purchasing the derivative from investors with smaller positions in the stock. Expanding this

component of trade yields:

D2
Si −

Z 1

0

D2
Sidi =

(
E (µ̃|Φi)−

R 1
0
E (µ̃|Φi) di

)2

τ−2 (PD + V ar (µ̃|Φi))
2 . (11)

This component of derivative trade thus highly resembles trade in the stock market, except

that it is a squared, rather than absolute measure. As a result, forces that create trade in the

stock market will also generate trade in the derivative market. Moreover, the risk-uncertainty

hedging component of derivative trade is a function of PD. Hence, the quality of investors’

risk information and the extent of noise trade can a§ect trade in the derivative market in two
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fashions: directly, through the risk-information component of trade, and indirectly, through

their impact on investors’ willingness to trade on their mean information. This renders

comparative statics with respect to private risk information di¢cult. Nevertheless, increases

in the derivative price driven by Ṽ or Z̃D a§ect the risk-uncertainty hedging component of

trading volume only, and hence, definitively lead to a reduction in derivative volume. In

sum, we have the following corollary.

Corollary 3 i) Increases in the derivative price cause a decline in trade in the stock market.

ii) Increases in the derivative price driven by Ṽ or Z̃D cause a decline in trade in the deriv-

ative market.

With this foundation in mind, we consider the covariance between volume in the two

markets and price changes in the two markets. Mathematically, this involves considering

the direction of the impact of each of the underlying random variates, µ̃, Ṽ , Z̃S, and Z̃D,

on prices and volume. Formally, suppose that prior to trade, there exist initial prices PS0

and PD0 and define ∆PS ≡ PS − PS0 and ∆PD ≡ PD − PD0. Then, we have the following

corollary.

Corollary 4 The statistical relationship between contemporaneous returns in the stock and

derivative and trading volume in the two markets can be summarized as follows:

i) Cov (∆PS, V olS) > 0,

ii) Cov (∆PS, V olD) > 0,

iii) Cov (∆PD, V olS) < 0,

iv) Cov (∆PD, V olD) < 0.

The corollary may be understood by considering the relationship between the risk pre-

mium in the stock market, the derivative price, and trading volume in the two markets.

Proposition 1 reveals two key predictions: i) forces that drive up the derivative price in-

crease the risk premium in the stock market, and ii) increases in the risk premium reduce
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investors’ willingness to trade on their mean-based information. Specifically, innovations in

the stochastic variance Ṽ or noise trade in the derivative Z̃D increase the derivative price,

causing an increase in the risk premium in the stock market and disciplining investors’

willingness to trade on their information. Hence, price decreases in the stock market are

associated with heightened derivative prices, decreased trade in the stock, and decreased

trade in the derivative market.

Finally, note that our results have implications for the empirical literature that studies

option trading volume relative to equity trading volume (or O:E) (Roll, Schwartz, and Sub-

ramanyam (2010), Johnson and So (2012)). While private mean information leads investors

to trade in both the equity and derivative, risk information leads investors to trade in the

derivative only. Intuitively, this might suggest that the O:E ratio should decrease in the

amount of private risk information, but may increase or decrease in the amount of private

mean information. However, our results suggest that an additional force is present - when

investors have more precise risk information, the derivative price itself changes, which can

lead investors to trade more intensely on their mean information. Consequently, the net

e§ect of mean and risk information quality on the O:E ratio is unclear.

3.2 Belief Dispersion and Prices

Awell-documented result is that in a perfectly competitive rational expectations equilibrium,

only the average expectation of payo§s across investors and the average precision of investors’

beliefs a§ect expected returns (e.g., Banerjee (2011), Lambert, Leuz, and Verrecchia (2012)).

The thought experiment posed by these studies is as follows. Consider a change in the

underlying parameters of the model, such as the quality of investors’ private information

and the extent of noise trade, that causes investors’ beliefs and equilibrium demands to

diverge, but leads to no change in the average quality of their information. These studies

show that when investors have CARA utility, competition is perfect, and the stock’s payo§

is normally distributed, the risk premium is purely a function of the precision of investors’
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posteriors, and hence, prices will not change, on average. Nevertheless, empirical research has

shown that disagreement amongst investors is associated with lower future returns (Diether,

Malloy, and Scherbina (2002), Goetzmann and Massa (2005)). Our model suggests that

the e§ect of disagreement on a stock’s price will be moderated by the extent of uncertainty

regarding the riskiness of its payo§s.

Expression 6 demonstrates that the derivative price, and hence the risk premium in

the stock market, increase in the aggregate squared demands of investors, plus the squared

demand of noise traders,
R 1
0
D2
Sidi+ Z̃

2
S. This term reflects the aggregate desire of investors

to hedge the risk uncertainty created by their positions in the stock. Upon simplifying
R 1
0
D2
Sidi+ Z̃

2
S, we find that

Z 1

0

D2
Sidi+ Z̃

2
S = τ

2

R 1
0

(
E (µ̃|Φi)−

R 1
0
E (µ̃|Φi) di

)2
di

(PD + V ar (µ̃|Φi))
2 , (12)

i.e.,
R 1
0
D2
Sidi + Z̃

2
S is a function of the dispersion in informed investors’ beliefs as defined

in prior literature (e.g., Banerjee (2011)),
R 1
0

(
E (x̃|Φi)−

R 1
0
E (x̃|Φi) di

)2
di, weighted by

investors’ squared perception of the stock’s risk, (PD + V ar (µ̃|Φi))
2. Intuitively, when in-

vestors’ beliefs grow disparate, optimistic investors increase their positions in the stock mar-

ket, and pessimistic investors decrease their positions. Investors require a risk premium as

compensation for the risk induced by their positions. In the standard model, the increased

risk premium charged by optimistic investors is exactly o§set by the decreased risk premium

charged by pessimistic investors. However, in the face of uncertain risk, the compensation

that an investor charges to hold an equity position grows more rapidly in the size of this

position. This causes the equity risk premium to rise in dispersion in investors’ beliefs. More-

over, it implies that dispersion in beliefs leads to a greater aggregate hedge in the derivative

market, and a higher derivative price.

With this in mind, it is interesting to consider the forces in the model that lead investors’

beliefs to diverge. First, and trivially, exogenous variation in investors’ prior beliefs about the
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expected equity payo§ creates belief dispersion. So far, we have assumed that investors have

homogenous prior beliefs regarding E (µ̃) equal to m. When investors have heterogenous

prior beliefs over E (µ̃), determined by a measurable function mi : [0, 1] 7−! <, we have the

following result:

Proposition 5 The derivative price PD increases in
R 1
0

(
mi −

R 1
0
midi

)2
di. As a result,

the expected stock price E (PS) decreases in
R 1
0

(
mi −

R 1
0
midi

)2
di.

This proposition suggests that an increase in belief dispersion causes a drop in the stock

price, contradicting the empirical findings of Diether et al. (2002) and Goetzmann and

Massa (2005). However, this result is predicated upon the absence short sale constraints and

limited liability, both of which have been identified as drivers of the relationship between

disagreement and prices (Diether et al. (2002), Johnson (2004)). Nevertheless, the result

suggests that the higher levels of risk uncertainty attenuate the positive relationship between

stock prices and belief dispersion.

Next, we study how investors’ prior uncertainty regarding µ̃, the quality of their infor-

mation regarding µ̃, and noise trade in the stock market a§ect belief dispersion, and their

resulting impact on the derivative and stock prices. First, note that belief dispersion is non-

monotonic in the quality of investors’ information regarding µ̃, σ2". Hence, the derivative

price is non-monotonic in σ2". Intuitively, when investors’ information is very noisy, they pay

little attention to their private signals, and hence, share relatively similar beliefs. On the

other hand, when investors’ information is very precise, they heavily weight on their private

signals, but these signals are very accurate, and hence very similar.

On the other hand, belief dispersion increases monotonically in investors’ prior uncer-

tainty regarding µ̃, σ2µ, and the amount of noise trade in the stock market, σ
2
S. Weaker priors

cause investors to place more weight on their private information, and less weight on their

common prior. Likewise, a higher level of noise trade leads investors to place more weight

on their private information and less weight on the common signal that they receive from

price. Consequently, the derivative price increases in σ2µ and σ
2
S.
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The pricing of belief dispersion has implications for how σ2", σ
2
µ, and σ

2
S a§ect the expected

stock price. Traditional noisy rational expectations models suggest that higher quality pri-

vate information reduces stocks’ expected returns by leading to a reduction in investors’

perceived uncertainty. On the other hand, in our model, this can be o§set by the e§ect of

σ2" on the degree of dispersion in investors’ equilibrium beliefs. Formally, applying the chain

rule, we can write:

dE (PS)

dσ2"
/ −

dE [V ar (µ̃|Φi)]
dσ2"| {z }

change in belief precision

− E

 
dPD

d
R 1
0
D2
Sidi

d
R 1
0
D2
Sidi

dσ2"

!

| {z }
change in belief dispersion

. (13)

More precise private information has two e§ects: first, it has the standard e§ect of reducing

investors’ uncertainty regarding µ̃, which is captured by dE[V ar(µ̃|Φi)]
dσ2"

. Second, more pre-

cise private information increases belief dispersion, causing the derivative price to rise, and

making it costlier to hedge risk uncertainty. Depending upon the precise parameters of the

model, it is feasible that the stock’s expected price is non-monotonic in the quality of investor

information. As an illustrative example, in figure 2, we plot the expected stock price as a

function of σ2" in the case in which the variance distribution is binary, and, for simplicity,

investors possess only mean information. Given the chosen parameters, the e§ect of σ2" on

V ar (µ̃|Φi) is immaterial relative to the e§ect on PD, such that the stock’s risk premium

rises in σ2".

Finally, note that increases in σ2µ and σ
2
S not only decrease the expected stock price by

increasing uncertainty, but also increase belief dispersion, amplifying their negative impact

on the expected stock price. Formally, dE(PS)
dσ2µ

< −τ−1 @V ar(µ̃|Φi)
dσ2µ

and dE(PS)

dσ2S
< −τ−1 @V ar(µ̃|Φi)

dσ2S
.

The next corollary summarizes these results.

Corollary 5 i) The derivative price is non-monotonic in investors’ private information

quality regarding µ̃, σ2", increasing in investors’ prior uncertainty regarding µ̃, σ
2
µ, and in-

creasing in the variance of noise trade in the stock market, σ2S.
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Figure 2: This picture plots the asset price as a function of σ2" when Ṽ = 2 with probability
1
2
and 0 with probability 1

2
. In the simulation, investors possess only mean information,

σ2A = 0.10, σ
2
µ = 0.01, m = 0, and τ = 5. Notably, the asset price increases in σ2".

ii) The e§ect of private information quality regarding µ̃, σ2", on the expected stock price is

ambiguous. The negative e§ect of σ2µ and σ
2
S on the expected stock price is compounded by

risk uncertainty.

3.3 Risk Uncertainty and Investor Learning

In this section, we study how the presence of risk uncertainty impacts investors’ ability

to learn information regarding expected stock payo§s from the equity price. Our results

suggest that greater derivative prices reduce the e¢ciency of the stock price with respect

to investors’ private information. Moreover, we show that investors’ desire to hedge risk

uncertainty amplifies the e§ect of noise trader shocks in the derivative market on derivative

prices.

Expression 2 reveals that the amount of information that investors are able to derive

from the stock price is a function of PD, and is thus stochastic. The realized variance Ṽ ,

noise trade in the derivative market Z̃D, and belief dispersion increase the derivative price,

PD. This raises the cost of hedging risk uncertainty induced by a position in the stock,

causing the stock’s risk premium, τ−1Z̃S (PD + V ar (µ̃|Φi)), to rise in magnitude, for any

realized noise trader demand, Z̃S. This makes the stock price more sensitive to noise trade
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Z̃S relative to the investors’ private information regarding µ̃, reducing investors’ ability to

learn relevant information from the stock price. As a result, investors face greater residual

uncertainty over µ̃ as Ṽ , Z̃D, or belief dispersion rise. Conversely, noise trader sales in the

derivative market reduce the risk premium in the stock market and enhance learning, by

e§ectively o§ering informed investors a free hedge in the derivative market. This increases

the amount that investors learn from price.

Define the e¢ciency of the stock price to equal the inverse variation in the stock price

for a fixed level x̃, V ar (PS|x̃)
−1. Then, we have the following corollary.

Corollary 6 Investors’ residual uncertainty regarding µ̃, V ar (µ̃|Φi), and the e¢ciency of

the stock price, V ar (PS|x̃)
−1 decrease in noise trade in the derivative market, Z̃D, in the

uncertain variance Ṽ , and in belief dispersion
R 1
0

(
mi −

R 1
0
midi

)2
di.

Finally, note that the interaction between the two markets amplifies the e§ect of noise

trade and the realized variance on the derivative price. As Ṽ and Z̃D reduce learning from

prices, they lead to greater dispersion in investors’ equilibrium beliefs. This leads investors’

aggregate risk-uncertainty hedging demand in the derivative to rise, causing PD to rise

further.

3.4 Variance Risk Premium

A large body of empirical evidence has demonstrated that the pricing of a security that pays

o§ equal to the realized variance of returns (i.e., a variance swap) overshoots investors’ ex-

pectations of the future variance, and has termed the di§erence between these two quantities

the variance risk premium (e.g., Bollerslev, Tauchen, and Zhou (2009), Carr and Wu (2009)).

Existing theory typically explains this phenomenon as resulting from variance swaps’ neg-

ative betas (Carr and Wu (2009)) or from a preference for higher moments (Bakshi and

Madan (2006)). In line with the latter explanation, in our setting, a variance risk premium

can arise due to investors’ preference for skewness; the derivative pays o§ in states in risky
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states when investors’ marginal utility tends to be high. Define the variance risk premium

as −1 times the average investor’s expectation of future returns to the derivative, i.e.,

V RP ≡ PD −
Z 1

0

E
(
Ṽ |Φi

)
di. (14)

This definition captures the di§erence between how investors price the variance Ṽ , and

the average expectation of the future variance. An advantage to studying the variance risk

premium in a model of heterogeneously informed investors is that it can be related to trading

volume and investors’ private information quality. In particular, the variance risk premium

increases in the size of investors’ risk-uncertainty hedging demands in the derivative security,

which are a function of belief dispersion and the distribution of µ̃ and '̃i. By applying the

results from Corollary 5 and Proposition 5, the variance risk premium increases in belief

dispersion
R 1
0

(
mi −

R 1
0
midi

)2
, is non-monotonic in σ2", increases in σ

2
µ, and increases in σ

2
S.

Moreover, the model suggests that the variance risk premium is negatively associated

with trading volume in the two markets. This is a direct consequence of Corollary 4: when

the variance risk premium is high, investors are more averse to the risk uncertainty that

results from a position in the stock market. This makes them less willing to trade on their

information regarding µ̃, such that trading volumes in both the stock and derivative are

lower. Additionally, empirical evidence suggests that derivative returns and the returns of

their underlyings often move in opposite directions (Bakshi, Cao, and Chen (2000)), and

that the variance risk premium predicts future equity returns (Bollerslev, Tauchen, and

Zhou (2009)). In the present setting, there exists a direct relationship between the size of

the variance risk premium and stock returns. This follows trivially from expression 2, which

shows that the risk premium in the stock market increases with PD. In summary, we have

the following proposition.

Proposition 6 i) The variance risk premium increases in σ2m, σ
2
S, and σ

2
µ, and is non-

monotonic in σ2".
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ii) The variance risk premium is negatively correlated with trading volume in the stock and

derivative markets.

iii) Stock returns and the variance risk premium are linearly related.

4 Conclusion

This article develops a noisy rational expectations model in which risk-averse investors pos-

sess information not only on a stock’s expected payo§s, but also the risk of these payo§s.

Investors in the model can trade in a stock or a derivative security whose value increases in

the riskiness of the stock’s payo§s. In the equilibrium studied in the model, the stock price

serves as an aggregator of investors’ mean information, and the derivative price serves as an

aggregator of investors’ risk information. Investors trade on mean information in both the

stock and derivative markets, as the derivative serves as insurance against adverse fluctua-

tions in the risk of the stock’s payo§s. On the other hand, investors trade on risk information

in the derivative only. The model has implications for relationship between trading volume

in stock and derivative markets and the respective prices in these two markets. Moreover,

it suggests that belief dispersion impacts expected stock returns and derivative prices. It

demonstrates that greater derivative prices are associated with reduced price e¢ciency in the

stock market. Finally, it justifies the empirically documented negative relationship between

the variance risk premium and returns in the stock market, and o§ers predictions on the

association between trading volume, information quality, and variance risk premia.

In the current set up of the model, investors have homogenous information quality, which

leads to a derivative price that is uninformative regarding investors’ information regarding

expected equity payo§s. Preliminary investigation suggests that this will not be the case

when investors have heterogenous information quality, since, in this case, the dispersion in

their beliefs will be a function of the fundamental µ̃. It may be interesting, but technically

challenging, to study the value of the derivative price to investors when it aggregates both
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information on the mean of future cash flows and their risk. Furthermore, a weakness of the

model is that because the variance distribution is fully general, it is di¢cult to o§er much

intuition into how the parameters of the variance distribution impact the derivative price.

It may be interesting to study more specific distributions of the variance Ṽ in order to o§er

more definitive comparative statics on the drivers of the derivative price in the model.

5 Appendix

Proof of Proposition (1). Under the conjecture that FPD (·|PS , µ̃) = FPD (·|PS), the derivative

price serves no role in updating on µ̃, and hence, its distribution is irrelevant in determining the posterior

distribution of x̃ given the investors’ information. Consequently, upon conditioning on the uncertain variance

Ṽ , the investors’ belief regarding x̃ is normally distributed: x̃|Ṽ ,Φi ∼ N
(
E (x̃|Φi) , V ar (µ̃|Φi) + Ṽ

)
. Thus,

the first order condition with respect to the equity demand and derivative demand is equal to:

0 =
@

@DSi
EV

(
− exp

[
−τ−1DSi (E (x̃|Φi)− PS) +

1

2
τ−2D2

SiV ar (µ̃|Φi)

+τ−1DDiPD + τ
−1
(
τ−1

D2
Si

2
−DDi

)
Ṽ

]
|Φi
)

0 =
@

@DDi
EV

[
− exp

(
−τ−1DSi (E (x̃|Φi)− PS) +

τ−2

2
D2
SiV ar (µ̃|Φi)

+τ−1DDiPD + τ
−1
(
τ−1

D2
Si

2
−DDi

)
Ṽ

)
|Φi
]
.

As we show in the proof of Proposition 2, Ṽ |Φi lies in the exponential family, and has a moment generating

function that is defined on the reals, i.e., 8t 2 <, E
(
− exp

(
tṼ
)
|Φi
)
< 1. This implies that the order of
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di§erentiation and expectation can be interchanged in these two conditions,18 which yields the following:

0 = EV

(
−
(
−τ−1 (E (x̃|Φi)− PS) + τ−2DSi

(
Ṽ + V ar (µ̃|Φi)

))
exp

[
−τ−1DSi (E (x̃|Φi)− PS)+

∗τ−2D2
SiV ar (µ̃|Φi) + τ

−1DDiPD + τ
−1
(
τ−1

D2
Si

2
−DDi

)
Ṽ

]
|Φi
)

0 = EV

h
−
(
τ−1PD − τ−1Ṽ

)
exp

[
−τ−1DSi (E (x̃|Φi)− PS)+

∗τ−2D2
SiV ar (µ̃|Φi) + τ

−1DDiPD + τ
−1
(
τ−1

DSi
2
−DDi

)
Ṽ

]
|Φi
)
.

Dividing the two conditions by the constant functions of Ṽ yields the following two simplified conditions:19

EV

((
−
τ

DSi
(E (x̃|Φi)− PS) + V ar (µ̃|Φi) + Ṽ

)
exp

(
τ−1

(
τ−1

D2
Si

2
−DDi

)
Ṽ

)
|Φi
)

= 0

EV

((
−PD + Ṽ

)
exp

(
τ−1

(
τ−1

D2
Si

2
−DDi

)
Ṽ

)
|Φi
)

= 0.

Critically, note that − τ
DSi

(E (x̃|Φi)− PS) + V ar (µ̃|Φi) and PD are known constants conditional on Φi.

Moreover, there is a unique constant k that solves:

EV

((
k + Ṽ

)
exp

(
τ−1

(
τ−1

D2
Si

2
−DDi

)
Ṽ

)
|Φi
)
= 0.

18In particular, let M (t) ≡ E
(
− exp

(
tṼ
)
|Φi
)
. We wish to show that d

dtM (t) = E
(
−Ṽ exp

(
tṼ
)
|Φi
)
.

In order to do so, we apply the dominated convergence theorem. We show that, for any sequence {tn} with
tn ! t, there exists a function κ (V ) such that:

∣∣∣∣
− exp (tnV )− exp (tV )

tn − t

∣∣∣∣ < κ (V )

and E (κ (V )) < 1. To find such a κ (V ), note that the mean value theorem implies that there exists a ξ
between tn and t such that:

∣∣∣∣
− exp (tnV )− exp (tV )

tn − t

∣∣∣∣ = |−ξV exp (ξV )|

= ξV exp (ξV )

Now, using the fact that V ≤
1X

j=0

1
j!V

j = exp (V ), we get that ξV exp (ξV ) < exp ((ξ + 1)V ). Letting

κ (V ) = exp ((ξ + 1)V ), and using the fact that the MGF exists for all reals, we have the result.
19Since we may change the order of di§erentiation and expectation, and the utility function is concave,

the second order condition holds.
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To see this, note that:

lim
k!−1

EV

((
k + Ṽ

)
exp

(
τ−1

(
τ−1

D2
Si

2
−DDi

)
Ṽ

)
|Φi
)

= −1

lim
k!1

EV

((
k + Ṽ

)
exp

(
τ−1

(
τ−1

D2
Si

2
−DDi

)
Ṽ

)
|Φi
)

= 1

and

@

@k
EV

((
k + Ṽ

)
exp

(
τ−1

(
τ−1

D2
Si

2
−DDi

)
Ṽ

)
|Φi
)

= EV

(
exp

(
τ−1

(
τ−1

D2
Si

2
−DDi

)
Ṽ

)
|Φi
)
> 0.

Together with the above two conditions, this implies that

−
τ

DSi
(E (x̃|Φi)− PS) + V ar (µ̃|Φi) = −PD,

or, solving for DSi,

DSi = τ
E (x̃|Φi)− PS
PD + V ar (µ̃|Φi)

.

The condition for market clearing requires that:

Z 1

0

DSidi = −Z̃S
Z 1

0

τ
E (x̃|Φi)− PS
PD + V ar (µ̃|Φi)

di = −Z̃S ,

that is,

PS =

Z 1

0

E (x̃|Φi) di+ τ−1Z̃S (PD + V ar (µ̃|Φi)) .

In the proof of Proposition 3, we show that there is a unique linear equilibrium price that satisfies this

equation.

Proof of Corollary (1).

Note that there is no dependence of E (x̃|Φi) on {η̃i}i2[0,1], and τ
−1Z̃S (PD + V ar (µ̃|Φi)) depends upon

Ṽ only through PD. Thus, we have that FPS
(
·|PD, Ṽ

)
= FPS (·|PD).

Proof of Proposition (2). We start by conjecturing a generalized linear equilibrium, as in Breon-
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Drish (2015b). In such an equilibrium, we conjecture that price satisfies:

PD

(
Ṽ , Z̃D

)
= δ

(
l
(
Ṽ , Z̃D

))

where δ0 > 0

and l
(
Ṽ , Z̃D

)
= Ṽ + aZ̃D,

for some constant a that will be determined as part of the equilibrium. Moreover, given that FPS
(
·|PD, Ṽ

)
=

FPS (·|PD), we have that FṼ |PD,PS ,η̃i = FṼ |PD,η̃i . As δ
0 > 0, investors can invert the linear statistic Ṽ +

aZ̃D from price, and hence, the information in PD is equivalent to l̃
(
Ṽ , Z̃D

)
. Thus, FṼ |PD,η̃i = FṼ |l̃,η̃i .

Conditional on l̃ and η̃i, we have that the variance distribution satisfies:

dFṼ |l̃,η̃i (v) / dFV (v)
1p
2πσ2e

exp

{
−
1

2σ2e
(η̃i − v)

2

}
dηi

1p
2πσ2D

exp

{
−

1

2σ2D

(
l̃ − av

)2}
dl

/ exp

{(
−
a2

2σ2D
−

1

2σ2e

)
v2 +

(
1

σ2e
η̃i +

a

σ2D
l̃

)
v

}
dFV (v)

such that we may write:

dFṼ |l̃,η̃i (v) =
exp

n(
− a2

2σ2D
− 1

2σ2e

)
v2 +

(
1
σ2e
η̃i +

a
σ2D
l̃
)
v
o
dFV (v)

R
Υ
exp

n(
− a2

2σ2D
− 1

2σ2e

)
v2 +

(
1
σ2e
η̃i +

a
σ2D
l̃
)
v
o
dFV (v) dv

.

This distribution belongs to the exponential family, i.e., it may be written in the form

exp
n(
k1 (a) η̃i + k2 (a) l̃

)
v − g

(
k1 (a) η̃i + k2 (a) l̃; a

)o
H (v; a) where:

k1 (a) =
1

σ2e

k2 (a) =
a

σ2D

g (ξ) = log

[Z

Υ

exp

{
ξv −

1

2

(
1

σ2e
+
a2

σ2D

)
v2
}
dFV (v)

]
and

H (v; a) = exp

{
−
1

2

(
1

σ2e
+
a2

σ2D

)
v2
}
dFV (v) .

This implies that Ṽ |η̃i, l̃ has moment generating function:

E
h
exp

(
tṼ
)
|η̃i, l̃

i
= exp

{
g

(
1

σ2e
η̃i +

a

σ2D
l̃ + t

)
− g

(
1

σ2e
η̃i +

a

σ2D
l̃

)}
.
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Then, the investors’ optimization problem can be written:

argmax
DDi

EV

(
− exp

(
−τ−1DSi (E (x̃|Φi)− PS) +

τ−2

2
D2
SiV ar (µ̃|Φi)

+τ−1DDiPD + τ
−1
(
τ−1

D2
Si

2
−DDi

)
Ṽ

))

= argmax
DDi

EV

(
− exp

(
τ−1DDiPD + τ

−1
(
τ−1

D2
Si

2
−DDi

)
Ṽ

))

= argmax
DDi

− exp
(
τ−1DDiPD

)
EV

(
exp

(
τ−1

(
τ−1

D2
Si

2
−DDi

)
Ṽ

))

= argmax
DDi

− exp
(
τ−1DDiPD

)
exp

{
g

(
1

σ2e
η̃i +

a

σ2D
l̃ + τ−1

(
τ−1

D2
Si

2
−DDi

))
− g

(
1

σ2e
η̃i +

a

σ2D
l̃

)}

= argmax
DDi

− exp
{
g

(
1

σ2e
η̃i +

a

σ2D
l̃ + τ−1

(
τ−1

D2
Si

2
−DDi

))
− g

(
1

σ2e
η̃i +

a

σ2D
l̃

)
+ τ−1DDiPD

}
.

Taking the first order condition yields:

0 =
@

@DDi

[
g

(
1

σ2e
η̃i +

a

σ2D
l̃ + τ−1

(
τ−1

D2
Si

2
−DDi

))

−g
(
1

σ2e
η̃i +

a

σ2D
l̃

)
+ τ−1DDiPD

]

0 = −g0
(
1

σ2e
η̃i +

a

σ2D
l̃ + τ−1

(
τ−1

D2
Si

2
−DDi

))
+ PD

DDi = τ

(
1

σ2e
η̃i +

a

σ2D
l̃

)
− τg0−1 (PD) +

1

2τ
D2
Si.

Note that noise traders in the stock market have identical derivative demands, except that their equity

demands are replaced by Z̃S ; hence, their demands for the derivative market take the same form given their

signals η̃Zi. Hence, the market clearing condition is:

Z 1

0

[
τ

(
1

σ2e
η̃i +

a

σ2D
l̃

)
− τg0−1 (PD) +

1

2τ
D2
Si

]
di+

Z 1

0

[
τ

(
1

σ2e
η̃Zi +

a

σ2D
l̃

)
− τg0−1 (PD) +

1

2τ
Z̃2S

]
di+Z̃D = 0.

Applying the law of large numbers and simplifying yields:

PD = g
0
(
1

2τ

[
2τ

(
1

σ2e
Ṽ +

a

σ2D
l̃

)
+ Z̃D +

1

2τ

(Z 1

0

D2
Sidi+ Z̃

2
S

)])
.

In order for this to satisfy our conjecture that price depends on Ṽ and Z̃D only through the linear statistic

l
(
Ṽ , Z̃D

)
, it must be the case that:

l̃ =
2τ

σ2e
Ṽ + Z̃D

which implies that there is a unique generalized linear equilibrium: a = 2τ
σ2e
.
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Proof of Corollary (2). Expression (6) shows the only dependence of PD on µ̃ is through the term,
R
D2
Sidi− Z̃

2
S . Moreover, note that:

Z 1

0

D2
Sidi− Z̃

2
S =

Z 1

0

 
E (x̃|Φi)−

R 1
0
E (x̃|Φi) di− τ−1Z̃S (PD + V ar (µ̃|Φi))
τ−1 (PD + V ar (µ̃|Φi))

!2
di− Z̃2S

=

Z 1

0

 
E (x̃|Φi)−

R 1
0
E (x̃|Φi) di

τ−1 (PD + V ar (µ̃|Φi))
− Z̃S

!2
di− Z̃2S

=

Z 1

0

 
E (x̃|Φi)−

R 1
0
E (x̃|Φi) di

τ−1 (PD + V ar (µ̃|Φi))

!2
di

+
2Z̃S
τ−1PD

Z 1

0

(
E (x̃|Φi)−

Z 1

0

E (x̃|Φi) di
)
di+ Z̃2S − Z̃

2
S

=

Z 1

0

 
E (x̃|Φi)−

R 1
0
E (x̃|Φi) di

τ−1 (PD + V ar (µ̃|Φi))

!2
di.

Finally, note that this term does not depend on µ̃ since:

Z 1

0

(
E (x̃|Φi)−

Z 1

0

E (x̃|Φi) di
)2
di

=

Z 1

0

((
σ−2"

h−2σ−2S + σ−2µ + σ−2"

)
('̃i − µ̃)

)2
di

=

(
σ−2"

h−2σ−2S + σ−2µ + σ−2"

)2 Z 1

0

"̃2i di,

and hence the conjecture has been verified.

Proof of Proposition (3). Using the results from Proposition (1) and Proposition (2), a rational

expectations equilibrium must simultaneously satisfy the following three conditions:

(1) DSi =
E (x̃|Φi)− PS

τ−1 (PD + V ar (µ̃|Φi))

(2) PS
(
µ̃, Z̃S

)
=

Z 1

0

E (x̃|Φi) di+ τ−1Z̃S (PD + V ar (µ̃|Φi))

(3) PD
(
Ṽ , Z̃D

)
= g0

(
1

2τ

[(
1 +

4τ2

σ2eσ
2
D

)(
2τ

σ2e
Ṽ + Z̃D

)
+
1

2τ

(Z 1

0

D2
Sidi+ Z̃

2
S

)])
.

We first show there is a unique equilibrium in the stock market for a fixed PD. Note that we have:

PS = α0 + αµµ̃+ αzZ̃S .

This enables investors to invert the signal PS−α0αµ
= µ̃+ αz

αµ
Z̃S with precision

(
αz
αµ

)−2
σ−2S . Hence, applying
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the law of large numbers yields:

PS =

Z 1

0

E (x̃|Φi) di+ τ−1Z̃S (PD + V ar (µ̃|Φi))

=

Z 1

0

(
αz
αµ

)−2
σ−2S

(
PS−α0
αµ

)
+ σ−2" '̃i + σ

−2
µ m

(
αz
αµ

)−2
σ−2S + σ−2µ + σ−2"

di+ τ−1Z̃S

0

B@
1

(
αz
αµ

)−2
σ−2S + σ−2µ + σ−2"

+ PD

1

CA

=

(
αz
αµ

)−2
σ−2S

(
PS−α0
αµ

)
+ σ−2" µ̃+ σ−2µ m

(
αz
αµ

)−2
σ−2S + σ−2µ + σ−2"

+ τ−1Z̃S

0

B@
1

(
αz
αµ

)−2
σ−2S + σ−2µ + σ−2"

+ PD

1

CA .

Upon simplifying, we find:

PS =
−
(
αz
αµ

)−2
σ−2S

α0
αµ
+ σ−2" µ̃+ σ−2µ m

(
αz
αµ

)−2
σ−2S

(
1− 1

αµ

)
+ σ−2µ + σ−2"

+τ−1Z̃S

0

B@
1

(
αz
αµ

)−2
σ−2S + σ−2µ + σ−2"

+ PD

1

CA

(
αz
αµ

)−2
σ−2S + σ−2µ + σ−2"

(
αz
αµ

)−2
σ−2S

(
1− 1

αµ

)
+ σ−2µ + σ−2"

.

We thus have the following equilibrium conditions in the stock market for a fixed PD:

α0 =
−
(
αz
αµ

)−2
σ−2S

α0
αµ
+ σ−2µ m

(
αz
αµ

)−2
σ−2S

(
1− 1

αµ

)
+ σ−2µ + σ−2"

αµ =
σ−2"(

αz
αµ

)−2
σ−2S

(
1− 1

αµ

)
+ σ−2µ + σ−2"

αz = τ−1PD

(
αz
αµ

)−2
σ−2S + σ−2µ + σ−2"

(
αz
αµ

)−2
σ−2S

(
1− 1

αµ

)
+ σ−2µ + σ−2"

+
τ−1

(
αz
αµ

)−2
σ−2S

(
1− 1

αµ

)
+ σ−2µ + σ−2"

.

We proceed to prove that there is a unique vector (α0,αµ,αz) satisfying these three equations. Dividing the

third equation by the second, we find:

αz
αµ

=

τ−1PD

!
αz
αµ

"−2
σ−2S +σ−2µ +σ−2"

!
αz
αµ

"−2
σ−2S

!
1− 1

αµ

"
+σ−2µ +σ−2"

+ τ−1!
αz
αµ

"−2
σ−2S

!
1− 1

αµ

"
+σ−2µ +σ−2"

σ−2"!
αz
αµ

"−2
σ−2S

!
1− 1

αµ

"
+σ−2µ +σ−2"

=

τ−1PD

((
αz
αµ

)−2
σ−2S + σ−2µ + σ−2"

)
+ τ−1

σ−2"
.
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Let h ≡ αz
αµ
. We prove there exists a unique, finite h that solves the above equation. The condition simplifies

to:

F1 (h) ≡ −τh3σ2Sσ
2
µ + h

2σ2Sσ
2
µσ

2
" + PDh

2σ2Sσ
2
µ + PDh

2σ2Sσ
2
" + PDσ

2
µσ

2
" = 0

Clearly, there are no negative solutions as F 01 (x) < 0 for x < 0 and F1 (0) > 0. By Descarte’s rule of signs,

there is at most one positive solution to this equation. Note that a positive solution exists because the left

hand side approaches −1 as h goes to 1. Finally, note that αµ and αz are uniquely defined by equilibrium

conditions once h has been determined. To see this, note that the condition for αµ may be written:20

αµ =
σ−2"

h−2σ−2S

(
1− 1

αµ

)
+ σ−2µ + σ−2"

, αµ =
σ2µσ

2
" + h

2σ2Sσ
2
µ

σ2µσ
2
" + h

2σ2Sσ
2
µ + h

2σ2Sσ
2
"

.

It is easily seen that α0 is also defined uniquely given αµ and αz. Next, consider the derivative price.

Simplifying, we find:

PD = g0

0

@ 1

2τ

2

4
(
1 +

4τ2

σ2eσ
2
D

)(
2τ

σ2e
Ṽ + Z̃D

)
+
1

2τ

0

@
Z 1

0

 
E (x̃|Φi)−

R 1
0
E (x̃|Φi) di

τ−1 (V ar (µ|Φi) + PD)
− Z̃S

!2
di+ Z̃2S

1

A

3

5

1

A

= g0

0

@ 1

2τ

2

4
(
1 +

4τ2

σ2eσ
2
D

)(
2τ

σ2e
Ṽ + Z̃D

)
+
1

2τ

Z 1

0

 
E (x̃|Φi)−

R 1
0
E (x̃|Φi) di

τ−1 (V ar (µ|Φi) + PD)

!2
di

3

5

1

A

= g0

0

B@
1

2τ

2

64
(
1 +

4τ2

σ2eσ
2
D

)(
2τ

σ2e
Ṽ + Z̃D

)
+

h (PD)
4
τσ4Sσ

4
µσ

2
"

2
(
h (PD)

2
σ2Sσ

2
µσ

2
" + P

2
Dh (PD)σ

2
Sσ

2
µ + P

2
Dh (PD)σ

2
Sσ

2
" + PDσ

2
µσ

2
"

)2

3

75

1

CA

= g0 (Γ (PD)) .

where h (PD) is defined as the implicit solution to F1 (h (PD)) = 0 for any given PD and

Γ (PD)≡ 1
2τ

[(
1 + 4τ2

σ2eσ
2
D

)(
2τ
σ2e
Ṽ + Z̃D

)
+

h(PD)
4τσ4Sσ

4
µσ

2
"

2(h(PD)2σ2Sσ2µσ2"+P 2
Dh(PD)σ

2
Sσ

2
µ+P

2
Dh(PD)σ

2
Sσ

2
"+PDσ

2
µσ

2
")

2

]
. Note that if

there exists a unique solution PD to this equation, then, by equilibrium condition (2), we can solve for the

unique PS . Hence, we will have proven that there exists a unique rational expectations equilibrium. To show

that this is the case, we argue that:

lim
PD!−1

PD − g0 (Γ (PD)) = −1

lim
PD!1

PD − g0 (Γ (PD)) = 1.

20The zero solution to this equation may be ruled out by the fact that αµ = 0 =) h =1.
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This holds because g0 is continuous, and Γ (PD) is bounded in PD. To see this, note that h (PD) is the

unique solution to a cubic equation and is hence continuous. Moreover, it appears in both the numerator

and denominator of
h(PD)

4τσ4Sσ
4
µσ

2
"

2(h(PD)2σ2Sσ2µσ2"+P 2
Dh(PD)σ

2
Sσ

2
µ+P

2
Dh(PD)σ

2
Sσ

2
"+PDσ

2
µσ

2
")

2 with the same power, while PD

appears in the denominator of
h(PD)

4τσ4Sσ
4
µσ

2
"

2(h(PD)2σ2Sσ2µσ2"+P 2
Dh(PD)σ

2
Sσ

2
µ+P

2
Dh(PD)σ

2
Sσ

2
"+PDσ

2
µσ

2
")

2 only. Now, applying the

chain rule and implicit function theorem, we find that:

d

dPD
Γ (h, PD) =

d

dPD

h4τσ4Sσ
4
µσ

2
"

2
(
h2σ2Sσ

2
µσ

2
" + PDh

2σ2Sσ
2
µ + PDh

2σ2Sσ
2
" + PDσ

2
µσ

2
"

)2

=
@

@PD

h4τσ4Sσ
4
µσ

2
"

2
(
h2σ2Sσ

2
µσ

2
" + PDh

2σ2Sσ
2
µ + PDh

2σ2Sσ
2
" + PDσ

2
µσ

2
"

)2

−
(
@F1
@h

)−1(
@F1
@PD

)
@

@h

h4τσ4Sσ
4
µσ

2
"

2
(
h2σ2Sσ

2
µσ

2
" + PDh

2σ2Sσ
2
µ + PDh

2σ2Sσ
2
" + PDσ

2
µσ

2
"

)2

=
−h4τσ4Sσ

4
µσ

2
"

(
h2σ2Sσ

2
µ + h

2σ2Sσ
2
" + σ

2
µσ

2
"

)

(
h2σ2Sσ

2
µσ

2
" + PDh

2σ2Sσ
2
µ + PDh

2σ2Sσ
2
" + PDσ

2
µσ

2
"

)3

−
h2σ2Sσ

2
µ + h

2σ2Sσ
2
" + σ

2
µσ

2
"

hσ2S
(
2σ2µσ

2
" + 2σ

2
µPD + 2σ

2
"PD + 3hτσ

2
µ

)
2h3τσ4Sσ

6
µσ

4
"PD(

h2σ2Sσ
2
µσ

2
" + PDh

2σ2Sσ
2
µ + PDh

2σ2Sσ
2
" + PDσ

2
µσ

2
"

)3

=
−h2τσ2Sσ

4
µσ

2
"

(
h2σ2Sσ

2
µ + h

2σ2Sσ
2
" + σ

2
µσ

2
"

) (
3τh3σ2Sσ

2
µ + 2h

2σ2Sσ
2
µσ

2
" + 2PDh

2σ2Sσ
2
µ + 2PDh

2σ2Sσ
2
" + 2PDσ

2
µσ

2
"

)

(
2σ2µσ

2
" + 2σ

2
µPD + 2σ

2
"PD + 3hτσ

2
µ

) (
h2σ2Sσ

2
µσ

2
" + PDh

2σ2Sσ
2
µ + PDh

2σ2Sσ
2
" + PDσ

2
µσ

2
"

)3 < 0.

Thus, applying the fact that g00 > 0,21

@

@PD
(PD − g0 (Γ (PD)))

= 1− 2g00 (Γ (PD))
d

dPD
Γ (PD) > 0.

Proof of Proposition (4). We have that:

V olS =

Z 1

0

∣∣∣∣DSi −
Z 1

0

DSidi

∣∣∣∣ di

=

Z 1

0

∣∣∣∣∣
E (x̃|Φi)−

R 1
0
E (x̃|Φi) di− τ−1Z̃S (PD + V ar (µ̃|Φi))
τ−1 (PD + V ar (µ̃|Φi))

+ Z̃S

∣∣∣∣∣ di

= τ

R 1
0

∣∣∣E (x̃|Φi)−
R 1
0
E (x̃|Φi) di

∣∣∣ di

PD + V ar (µ̃|Φi)

21For a proof, see Lemma A7 in Breon-Drish (2015a).
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and:

V olD =

Z 1

0

∣∣∣∣τ
(
1

σ2e
η̃i +

2τ

σ2eσ
2
D

l̃

)
− τg0−1 (PD) +

1

2τ
D2
Si −

Z 1

0

DDidi

∣∣∣∣ di

=

Z 1

0

∣∣∣∣τ
(
1

σ2e
η̃i +

2τ

σ2eσ
2
D

l̃

)
− τg0−1 (PD) +

1

2τ
D2
Si −

Z 1

0

τ

(
1

σ2e
η̃i +

2τ

σ2eσ
2
D

l̃

)
− τg0−1 (PD) +

1

2τ
D2
Si

∣∣∣∣ di

=

Z 1

0

∣∣∣∣τ
(
1

σ2e
η̃i − Ṽ

)
+
1

2τ
D2
Si −

1

2τ

Z 1

0

D2
Sidi

∣∣∣∣ di.

Proof of Corollary (3). In order to take comparative statics, note that the equilibrium condition

for PD e§ectively involves the following two equations:

F1 ≡ −τh3σ2Sσ
2
µ + h

2σ2Sσ
2
µσ

2
" + PDh

2σ2Sσ
2
µ + PDh

2σ2Sσ
2
" + PDσ

2
µσ

2
" = 0

F2 ≡ PD − g0
 
1

2τ

"(
1 +

4τ2

σ2eσ
2
D

)(
2τ

σ2e
Ṽ + Z̃D

)
+

h4τσ4Sσ
4
µσ

2
"

2
(
h2σ2Sσ

2
µσ

2
" + P

2
Dhσ

2
Sσ

2
µ + P

2
Dhσ

2
Sσ

2
" + PDσ

2
µσ

2
"

)2

#!
.

Applying the multivariate implicit function theorem, we find that for an arbitrary parameter γ, we have:

0

@
dh
dγ

dPD
dγ

1

A = −

0

@
@F1
@h

@F1
@PD

@F2
@h

@F2
@PD

1

A

−10

@
@F1
@γ

@F2
@γ

1

A

=
1

@F1
@PD

@F2
@h −

@F1
@h

@F2
@PD

0

@
@F2
@PD

− @F1
@PD

−@F2
@h

@F1
@h

1

A

0

@
@F1
@γ

@F2
@γ

1

A

=
1

@F1
@PD

@F2
@h −

@F1
@h

@F2
@PD

0

@
@F2
@PD

@F1
@γ −

@F1
@PD

@F2
@γ

−@F2
@h

@F1
@γ +

@F1
@h

@F2
@γ

1

A .

Now, 1
@F1
@PD

@F2
@h −

@F1
@h

@F2
@PD

> 0. To see this, note that:

@F1
@PD

@F2
@h

−
@F1
@h

@F2
@PD

=
(
h2σ2Sσ

2
µ + h

2σ2Sσ
2
" + σ

2
µσ

2
"

)
 
−

h3σ4Sσ
6
µσ

4
"PD(

h2σ2Sσ
2
µσ

2
" + PDh

2σ2Sσ
2
µ + PDh

2σ2Sσ
2
" + PDσ

2
µσ

2
"

)3 g
00

!

−
(
hσ2S

(
2σ2µσ

2
" + 2σ

2
µPD + 2σ

2
"PD − 3hτσ

2
µ

))
 
1 +

1

2

h4σ4Sσ
4
µσ

2
"

(
h2σ2Sσ

2
µ + h

2σ2Sσ
2
" + σ

2
µσ

2
"

)

(
h2σ2Sσ

2
µσ

2
" + PDh

2σ2Sσ
2
µ + PDh

2σ2Sσ
2
" + PDσ

2
µσ

2
"

)3 g
00

!

= −hσ2S
(
2σ2µσ

2
" + 2σ

2
µPD + 2σ

2
"PD − 3hτσ

2
µ

)
+
1

2

τh6σ6Sσ
6
µσ

2
"

(
h2σ2Sσ

2
µ + h

2σ2Sσ
2
" + σ

2
µσ

2
"

)

(
h2σ2Sσ

2
µσ

2
" + PDh

2σ2Sσ
2
µ + PDh

2σ2Sσ
2
" + PDσ

2
µσ

2
"

)3 g
00

where the last line follows by substituting the equilibrium condition F1 = 0. At an equilibrium h, we have
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hσ2S
(
2σ2µσ

2
" + 2σ

2
µPD + 2σ

2
"PD − 3hτσ2µ

)
= dF1

dh < 0. This follows because F1 (h) has a unique positive zero,

and is positive when h = 0. This, along with the fact that g00 > 0 proves that the expression is positive.

We next prove part ii) of the corollary. Note that:

dV olD
dV

=
dV olD
dPD

dPD
dV

dV olD
dZD

=
dV olD
dPD

dPD
dZD

.

By applying dPD
dV / −@F2

@h
@F1
@V + @F1

@h
@F2
@V and dPD

dZD
/ −@F2

@h
@F1
@V + @F1

@h
@F2
@V , we can show that

dPD
dV and dPD

dZD
are

positive. Therefore, the proof reduces to showing that dV olDdPD
is positive. Now, V olD can be written as:

Z 1

0

∣∣∣∣
1

σ2e

(
η̃i − Ṽ

)
+

1

2τ2

[
D2
Si −

Z 1

0

D2
Sidi

]∣∣∣∣ di

=

Z 1

0

∣∣∣∣
1

σ2e
ẽi +

1

2τ2

[
D2
Si −

Z 1

0

D2
Sidi

]∣∣∣∣ di.

Simplifying the second term in the absolute value, we find:

D2
Si −

Z 1

0

D2
Sidi

=

0

@
σ−2" "̃i

h−2σ−2S +σ−2µ +σ−2"

τ−1
(
PD +

(
h−2σ−2S + σ−2µ + σ−2"

)−1) − Z̃S

1

A

2

−
Z 1

0

 
h2τσ2S "̃iσ

2
µ

h2σ2Sσ
2
µσ

2
" + PDh

2σ2Sσ
2
µ + PDh

2σ2Sσ
2
" + PDσ

2
µσ

2
"

− Z̃S

!2
di

=

0

@
σ−2" "̃i

h−2σ−2S +σ−2µ +σ−2"

τ−1
(
PD +

(
h−2σ−2S + σ−2µ + σ−2"

)−1)

1

A

2

−

 
h2τσ2Sσ

2
µ

h2σ2Sσ
2
µσ

2
" + PDh

2σ2Sσ
2
µ + PDh

2σ2Sσ
2
" + PDσ

2
µσ

2
"

!2
σ2"

=
h4τ2σ4Sσ

4
µ

(
"̃2i − σ2"

)

(
h2σ2Sσ

2
µσ

2
" + PDh

2σ2Sσ
2
µ + PDh

2σ2Sσ
2
" + PDσ

2
µσ

2
"

)2

and:

Z 1

0

∣∣∣∣∣
1

σ2e
ẽi +

τ−2

2

h4τ2σ4Sσ
4
µ(

h2σ2Sσ
2
µσ

2
" + PDh

2σ2Sσ
2
µ + PDh

2σ2Sσ
2
" + PDσ

2
µσ

2
"

)2
(
"̃2i − σ

2
"

)
∣∣∣∣∣ di

≡
Z 1

0

∣∣∣∣
1

σ2e
ẽi + @

(
"̃2i − σ

2
"

)∣∣∣∣ di.
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Let "̂i ≡
(
"̃2i − σ2"

)
. It can be checked that d@

dPD
< 0. Hence, by the chain rule, we have that:

dV olD
dPD

=
d

dPD

Z 1

0

∣∣∣∣
1

σ2e
ẽi + @

(
"̃2i − σ

2
"

)∣∣∣∣ di

/ −
@

@@

Z 1

0

∣∣∣∣
1

σ2e
ẽi + @

(
"̃2i − σ

2
"

)∣∣∣∣ di

= −
@

@@

Z 1

−1

Z 1

−1

∣∣∣∣
ẽi
σ2e
+ @"̂i

∣∣∣∣ dF"̂idFei

= −
@

@@

Z 1

−1

2

4
Z 1

− ẽi
σ2e@

(
ẽi
σ2e
+ @"̂i

)
dF"̂i −

Z − ẽi
σ2e@

−1

(
ẽi
σ2e
+ @"̂i

)
dF"̂i

3

5 dFei

= −
Z 1

−1

2

4
Z 1

− ẽi
σ2e@

"̂idF"̂i −
Z − ẽi

σ2e@

−1
"̂idF"̂i

3

5 dFei .

Note that:

Z 1

− ẽi
σ2e@

"̂idF"̂i +

Z − ẽi
σ2e@

−1
"̂idF"̂i = 0

=)
Z 1

− ẽi
σ2e@

"̂idF"̂i = −
Z − ẽi

σ2e@

−1
"̂idF"̂i

=)
Z 1

− ẽi
σ2e@

"̂idF"̂i −
Z − ẽi

σ2e@

−1
"̂idF"̂i = −2

Z − ẽi
σ2e@

−1
"̂idF"̂i .

We thus have:

−
Z 1

−1

2

4
Z 1

− ẽi
σ2e@

"̂idF"̂i −
Z − ẽi

σ2e@

−1
"̂idF"̂i

3

5 dFei

= 2

Z 1

−1

Z − ẽi
σ2e@

−1
"̂idF"̂idFei < 0

since
R − ẽi

σ2e@

−1 "̂idF"̂i <
R1
−1 "̂idF"̂i = E ["̂i] = 0. This completes the proof.

Proof of Corollary (4). First, note that:

V olS = τ

R 1
0

∣∣∣E (µ̃|Φi)−
R 1
0
E (µ̃|Φi) di

∣∣∣ di

PD + V ar (µ̃|Φi)
= τ

R 1
0

∣∣∣ σ−2i ('̃i−µ̃)
h−2σ−2S +σ−2i +σ−2µ

∣∣∣

PD +
(
h−2σ−2S + σ−2i + σ−2µ

)−1

=
2
p
π
τ

σ−1i
h−2σ−2S +σ−2i +σ−2µ

PD +
(
h−2σ−2S + σ−2i + σ−2µ

)−1

=
2
p
π
τ

h2σ2Sσiσ
2
µ

h2σ2Sσ
2
iσ

2
µ + PDh

2σ2Sσ
2
i + PDh

2σ2Sσ
2
µ + PDσ

2
iσ

2
µ

.

46



In order to complete the proof, we consider the directional e§ect of a change in each of the random parameters

of the model, Z̃S , Z̃D, Ṽ , and µ̃, on ∆PS , ∆PD, V olS , and V olD. First, consider Z̃S . We have that

dV olS
dZS

= 0;
dV olD
dZS

= 0

dPS
dZS

> 0;
dPD
dZS

= 0.

Next, consider Z̃D. One can check that:

dV olS
dZD

=
dV olS
dPD

dPD
dZD

< 0

dV olD
dZD

=
dV olD
dPD

dPD
dZD

< 0

dPS
dZD

< 0;
dPD
dZD

> 0.

Similarly, we have that:

dV olS
dV

=
dV olS
dPD

dPD
dV

< 0

dV olD
dV

=
dV olD
dPD

dPD
dV

< 0

dPS
dV

< 0;
dPD
dV

> 0.

Finally,

dV olS
dµ

= 0;
dV olD
dµ

= 0

dPS
dµ

> 0;
dPD
dµ

= 0.

Combining these forces, we see that any change in the underlying random variables that causes the stock

price to increase causes volume in both markets to either remain constant or increase. Likewise, any change

in an underlying random variable that causes the derivative price to increase leads volume in both markets

to remain constant or decrease. This completes the proof.

Proof of Proposition (5). Let σ2m ≡
R 1
0

(
mi −

R 1
0
midi

)2
di. It is straightforward to replicate the

above proofs in the case of heterogenous prior beliefs to show that a unique equilibrium exists, which satisfies
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the following two equations:

0 = F1 = −τh3σ2Sσ
2
µ + h

2σ2Sσ
2
µσ

2
" + PDh

2σ2Sσ
2
µ + PDh

2σ2Sσ
2
" + PDσ

2
µσ

2
"

0 = F
σ2m
2 ≡ PD −

g0
(
2τ

(
1

σ2e
Ṽ +

1

σ2D
l̃

)
+ Z̃D

+
1

2τ

0

@ h4τσ4Sσ
4
µσ

2
"

2
(
h2σ2Sσ

2
µσ

2
" + PDh

2σ2Sσ
2
µ + PDh

2σ2Sσ
2
" + PDσ

2
µσ

2
"

)2 +
σ−2µ σ2m

τ−2
((
h−2σ−2S + σ−2µ + σ−2"

)−1
+ PD

)

1

A

1

A .

Applying the implicit function theorem as in the proof of Corollary 3, we have that:

@PD
@σ2m

/ −
@F

σ2m
2

@h

@F1
@σ2m

+
@F1
@h

@F
σ2m
2

@σ2m

=
@F1
@h

@F
σ2m
2

@σ2m
/ −

@F
σ2m
2

@σ2m
> 0

since @F1
@σ2m

= 0 and @F1
@h < 0. To see the e§ect of σ2m on the expected stock price, note that:

dE (PS)

dσ2m
/ −τ−1z̄S

dE (PD)

dσ2m
.

Since, for any realization of PD,
dE(PD)
dσ2m

> 0, we have that this is negative.

Proof of Corollary (5). Recall from the proof of Corollary 3, dPDdσ2"
/ −@F2

@h
@F1
@σ2"

+ @F1
@h

@F2
@σ2"
. Simplifying,

we find:

dPD
dσ2"

/ −
2h3τσ4Sσ

6
µσ

4
"PD

(
h2σ2Sσ

2
µ + PDh

2σ2S + PDσ
2
µ

)

(
h2σ2Sσ

2
µσ

2
" + PDh

2σ2Sσ
2
µ + PDh

2σ2Sσ
2
" + PDσ

2
µσ

2
"

)3 + g
00 ∗

h4τσ4Sσ
4
µhσ

2
S

(
2σ2µσ

2
" + 2σ

2
µPD + 2σ

2
"PD − 3hτσ2µ

) (
σ2"σ

2
µPD − h2σ2Sσ

2
µPD + h

2σ2"σ
2
SPD + h

2σ2"σ
2
Sσ

2
µ

)

2
(
σ2"σ

2
µPD + h

2σ2Sσ
2
µPD + h

2σ2"σ
2
SPD + h

2σ2"σ
2
Sσ

2
µ

)3

which has sign that is an ambiguous function of the underlying parameters. Next, we have that dPD
dσ2µ

/

−@F2
@h

@F1
@σ2µ

+ @F1
@h

@F2
@σ2µ

. Note that from the proof of Corollary 3, @F1@h < 0 and @F2
@h > 0. Moreover, we have that:

@F1
@σ2µ

= −τh3σ2S + h
2σ2Sσ

2
" + PDh

2σ2S + PDσ
2
"

= −h2
σ2S
σ2µ
σ2"PD < 0
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where we substituted the equilibrium condition F1 = 0. Moreover,

@F2
@σ2µ

/ −
@

@σ2µ

h4τ2σ4Sσ
4
µσ

2
"(

h2σ2Sσ
2
µσ

2
" + PDh

2σ2Sσ
2
µ + PDh

2σ2Sσ
2
" + PDσ

2
µσ

2
"

)2

= −
2τ2h6σ2µσ

6
Sσ

4
"PD(

σ2µσ
2
"PD + h

2σ2Sσ
2
"PD + h

2σ2µσ
2
SPD + h

2σ2µσ
2
Sσ

2
"

)3 < 0,

proving that dPD
dσ2µ

> 0. Finally, we have that @PD
@σ2S

/ −@F2
@h

@F1
@σ2µ

+ @F1
@h

@F2
@σ2µ

. Notice that

@F1
@σ2S

= −τh3σ2µ + h
2σ2µσ

2
" + PDh

2σ2µ + PDh
2σ2" = −

PDσ
2
µσ

2
"

σ2S
< 0

where we substituted F1 = 0. Next,

@F2
@σ2S

/ −
@

@σ2S

h4τ2σ4Sσ
4
µσ

2
"(

h2σ2Sσ
2
µσ

2
" + PDh

2σ2Sσ
2
µ + PDh

2σ2Sσ
2
" + PDσ

2
µσ

2
"

)2

= −
−2h4σ2Sτ

2σ6µσ
4
"PD(

σ2Sh
2σ2µσ

2
" + σ

2
SPDh

2σ2µ + σ
2
SPDh

2σ2" + PDσ
2
µσ

2
"

)3 < 0,

proving that @PD
@σ2S

> 0.

ii) The first result follows from the numerical example in figure 2. The second result follows from applying

the chain rule:

dE [PS ]

dσ2S
/ −

(
dE [V ar (µ̃|Φi)]

dσ2S
+ E

[
dPD
dσ2S

])
(15)

dE [PS ]

dσ2µ
/ −

(
dE [V ar (µ̃|Φi)]

dσ2µ
+ E

[
dPD
dσ2µ

])
. (16)

By the proof of part i), E
h
dPD
dσ2S

i
> 0 and E

h
dPD
dσ2µ

i
> 0.

Proof of Corollary (6). This follows since:

dV ar (µ̃|Φi)
dPD

=
d

dPD

1

h−2σ−2S + σ−2µ + σ−2"

=
2hσ2Sσ

4
µσ

4
"(

h2σ2Sσ
2
µ + h

2σ2Sσ
2
" + σ

2
µσ

2
"

)2
dh

dPD

= −
2hσ2Sσ

4
µσ

4
"(

h2σ2Sσ
2
µ + h

2σ2Sσ
2
" + σ

2
µσ

2
"

)2

(
dF1
dh

)−1
dF1
dPD

= −
2hσ2Sσ

4
µσ

4
"(

h2σ2Sσ
2
µ + h

2σ2Sσ
2
" + σ

2
µσ

2
"

)2
τh2σ2Sσ

2
µ + τh

2σ2Sσ
2
" + τσ

2
µσ

2
"

hσ2S
(
2σ2µσ

2
" + 2τσ

2
µPD + 2τσ

2
"PD + 3hτσ

2
µ

) > 0.
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Proof of Proposition (6). i) This follows from the proofs of Proposition 5 and Corollary 5.

ii) Letting PD =
R 1
0
E
(
Ṽ |Φi

)
di + V RP , the proof follows by replicating the proof of 3 holding fixed

R 1
0
E
(
Ṽ |Φi

)
di.

iii) This follows from an examination of expression 2.
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