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1 Introduction

There is a common thread connecting some of the most economically important prob-
lems in finance. For example, how do we determine that a fund manager has “out-
performed” given that there are thousands of managers and even those following
random strategies might outperform? How do we assess whether a variable such as
a dividend yield predicts stock returns given that so many other variables have been
tried? Should we use a three-factor model for asset pricing or a new five factor model
given that recent research documents that over 300 variables have been published as
candidate factors? The common thread is multiple testing or data mining.

Our paper proposes a new regression method that allows us to better navigate
through the flukes. The method is based on a bootstrap that allows for general
distributional characteristics of the observables, a range of test statistics (e.g., R2,
t-ratios, etc.), and, importantly, preserves both the cross-sectional and time-series de-
pendence in the data. Our method delivers specific recommendations. For example,
for a p-value of 5%, our method delivers a marginal test statistic. In performance
evaluation, this marginal test statistic identifies the funds that outperform or under-
perform. In our main application which is asset pricing, it will allow us to choose a
specific group of factors, i.e., we answer the question: How many factors?

Consider the following example in predictive regressions to illustrate the problems
we face. Suppose we have 100 candidate X variables to predict a variable Y . Our first
question is whether any of the 100 X variables appear to be individually significant.
This is not as straightforward as one thinks because what comes out as significant
at the conventional level may be “significant” by luck. We also need to take the
dependence among the X variables into account since large t-statistics may come in
bundles if the X variables are highly correlated. Suppose these concerns have been
addressed and we find a significant predictor, how do we proceed to find the next one?
Presumably, the second one needs to predict Y in addition to what the first variable
can predict. This additional predictability again needs to be put under scrutiny
given that 99 variables can be tried. Suppose we establish the second variable is a
significant predictor. When should we stop? Finally, suppose instead of predictive
regressions, we are trying to determine how many factors are important in a cross-
sectional regression. How should our method change in order to answer the same
set of questions but accommodate the potentially time-varying risk loadings in a
Fama-MacBeth type of regression?

We provide a new framework that answers the above questions. Several features
distinguish our approach from existing studies.
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First, we take data mining into account.1 This is important given the collective
effort in mining new factors by both academia and the finance industry. Data mining
has a large impact on hypothesis testing. In a single test where a single predetermined
variable X is used to explain the left-hand side variable Y , a t-statistic of 2.0 suffices
to overcome the 5% p-value hurdle. When there are 100 candidate X variables and
assuming independence, the 2.0 threshold for the maximal t-statistic corresponds to
a p-value of 99%, rendering useless the 2.0 cutoff in single tests.2 Our paper pro-
poses appropriate statistical cutoffs that control for the search among the candidate
variables.

While cross-sectional independence is a convenient assumption to illustrate the
point of data snooping bias, it turns out to be a big assumption. First, it is unrealistic
for most of our applications since almost all economic and financial variables are
intrinsically linked in complicated ways. Second, a departure from independence may
have a large impact on the results. For instance, in our previous example, if all
100 X variables are perfectly correlated, then there is no need for a multiple testing
adjustment and the 99% p-value incorrectly inflates the original p-value by a factor
of 20 (= 0.99/0.05). Recent work on mutual fund performance shows that taking
cross-sectional dependence into account can materially change inference.3

Our paper provides a framework that is robust to the form and amount of cross-
sectional dependence among the variables. In particular, our method maintains the
dependence information in the data matrix, including higher moment and nonlinear
dependence. Additionally, to the extent that higher moment dependence is difficult
to measure in finite samples and this may bias standard inference, our method auto-
matically takes sampling uncertainty (i.e., the observed sample may underrepresent
the population from which it is drawn from) into account and provides inference that
does not rely on asymptotic approximations.

Our method uses a bootstrap method. When the data are independent through
time, we randomly sample the time periods with replacement. Importantly, when
we bootstrap a particular time period, we draw the entire cross-section at that point
in time. This allows us to preserve the contemporaneous cross-sectional dependence
structure of the data. Additionally, by matching the size of the resampled data
with the original data, we are able to capture the sampling uncertainty of the original
sample. When the data are dependent through time, we sample with blocks to capture
time-series dependence, similar in spirit to White (2000) and Politis and Romano
(1994). In essence, our method reframes the multiple hypothesis testing problem in

1Different literature uses different terminologies. In physics, multiple testing is dubbed “looking
elsewhere” effect. In medical science, “multiple comparison” is often used for simultaneous tests,
particularly in genetic association studies. In finance, “data mining” “data snooping” and “multi-
ple testing” are often used interchangeably. We also use these terms interchangeably and do not
distinguish them in this paper.

2Suppose we have 100 tests and each test has a t-statistic of 2.0. Under independence, the chance
to make at least one false discovery is 1− 0.95100 = 1− 0.006 = 0.994.

3See Fama and French (2010) and Ferson and Yong (2014).
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regression models in a way that permits the use of bootstrapping to make inferences
that are both intuitive and distribution free.

Empirically, we show how to apply our method to both predictive regression and
cross-sectional regression models — the two areas of research for which data snooping
bias is likely to be the most severe. However, our method applies to other types of
regression models as well. Essentially, what we are providing is a general approach
to perform multiple testing and variable selection within a given regression model.

Our paper adds to the recent literature on the multidimensionality of the cross-
section of expected returns. Harvey, Liu and Zhu (2015) document 316 factors discov-
ered by academia and provide a multiple testing framework to adjust for data mining.
Green, Hand and Zhang (2013) study more than 330 return predictive signals that
are mainly accounting based and show the large diversification benefits by suitably
combining these signals. McLean and Pontiff (2015) use an out-of-sample approach
to study the post-publication bias of discovered anomalies. The overall finding of
this literature is that many discovered factors are likely false. But how many factors
are true factors? We provide a new testing framework that simultaneously addresses
multiple testing, variable selection, and test dependence in the context of regression
models.

Our method is inspired by and related to a number of influential papers, in partic-
ular, Foster, Smith and Whaley (FSW, 1997) and Fama and French (FF, 2010). In the
application of time-series prediction, FSW simulate data under the null hypothesis of
no predictability to help identify true predictors. Our method bootstraps the actual
data, can be applied to a number of test statistics, and does not need to appeal to
asymptotic approximations. More importantly, our method can be adapted to study
cross-sectional regressions where the risk loadings can potentially be time-varying.
In the application of manager evaluation, FF (2010) (see also, Kosowski et al., 2006,
Barras et al., 2010, and Ferson and Yong, 2014) employ a bootstrap method that
preserves cross-section dependence. Our method departs from theirs in that we are
able to determine a specific cut-off whereby we can declare that a manager has sig-
nificantly outperformed or that a factor is significant in the cross-section of expected
returns.

Our paper is organized as follows. In the second section, we present our testing
framework. In the third section, we first illustrate the insights of our method by
examining mutual fund performance evaluation. We then apply our method to the
selection of risk factors. Some concluding remarks are offered in the final section.
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2 Method

Our framework is best illustrated in the context of predictive regressions. We highlight
the difference between our method and the current practice and relate to existing
research. We then extend our method to accommodate cross-sectional regressions.

2.1 Predictive Regressions

Suppose we have a T × 1 vector Y of returns that we want to predict and a T ×M
matrix X that includes the time-series of M right-hand side variables, i.e., column
i of matrix X (Xi) gives the time-series of variable i. Our goal is to select a subset
of the M regressors to form the “best” predictive regression model. Suppose we
measure the goodness-of-fit of a regression model by the summary statistic Ψ. Our
framework permits the use of an arbitrary performance measure Ψ, e.g., R2, t-statistic
or F-statistic. This feature stems from our use of the bootstrap method, which does
not require any distributional assumptions on the summary statistics to construct
the test. In contrast, Foster, Smith and Whaley (FSW, 1997) need the finite-sample
distribution on R2 to construct their test. To ease the presentation, we describe our
approach with the usual regression R2 in mind but will point out the difference when
necessary.

Our bootstrap-based multiple testing adjusted incremental factor selection proce-
dure consists of three major steps:

Step I. Orthogonalization Under the Null

Suppose we already selected k (0 ≤ k < M) variables and want to test if there exists
another significant predictor and, if there is, what it is. Without loss of generality,
suppose the first k variables are the pre-selected ones and we are testing among the
rest M − k candidate variables, i.e., {Xk+j, j = 1, . . . ,M − k}. Our null hypothesis
is that none of these candidate variables provides additional explanatory power of Y ,
following White (2000) and FSW (1997). The goal of this step is to modify the data
matrix X such that this null hypothesis appears to be true in-sample.

To achieve this, we first project Y onto the group of pre-selected variables and
obtain the projection residual vector Y e,k. This residual vector contains informa-
tion that cannot be explained by pre-selected variables. We then orthogonalize
the M − k candidate variables with respect to Y e,k such that the orthogonalized
variables are uncorrelated with Y e,k for the entire sample. In particular, we indi-
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vidually project Xk+1, Xk+2, . . . , XM onto Y e,k and obtain the projection residuals
Xe
k+1, X

e
k+2, . . . , X

e
M , i.e.,

Xk+j = cj + djY
e,k +Xe

k+j, j = 1, . . . ,M − k, (1)

where cj is the intercept, dj is the slope and Xe
k+j is the residual vector. By construc-

tion, these residuals have an in-sample correlation of zero with Y e,k. Therefore, they
appear to be independent of Y e,k if joint normality is assumed between X and Y e,k.

This is similar to the simulation approach in FSW (1997), in which artificially
generated independent regressors are used to quantify the effect of the multiple test-
ing. Our approach is different from FSW because we use real data. In addition, we
use bootstrap and block bootstrap to approximate the empirical distribution of test
statistics.

We achieve the same goal as FSW while losing as little information as possible for
the dependence structure among the regressors. In particular, our orthogonalization
guarantees that the M − k orthogonalized candidate variables are uncorrelated with
Y e,k in-sample.4 This resembles the independence requirement between the simulated
regressors and the left-hand side variables in FSW (1997). Our approach is distri-
butional free and maintains as much information as possible among the regressors.
We simply purge Y e,k out of each of the candidate variables and therefore keep all
the distributional information among the variables that is not linearly related to Y e,k

intact. For instance, the tail dependency among all the variables — both pre-selected
and candidate — is preserved. This is important because higher moment dependence
may have a dramatic impact on the test statistics in finite samples.5

A similar idea has been applied to the recent literature on mutual fund perfor-
mance. In particular, Kosowski et al. (2006) and Fama and French (2010) subtract
the in-sample fitted alphas from fund returns, thereby creating “pseudo” funds that
exactly generate a mean return of zero in-sample. Analogously, we orthogonalize can-
didate regressors such that they exactly have a correlation of zero with what is left
to explain in the left-hand side variable, i.e., Y e,k.

4In fact, the zero correlation between the candidate variables and Y e,k not only holds in-sample,
but also in the bootstrapped population provided that each sample period has an equal chance of
being sampled in the bootstrapping, which is true in an independent bootstrap. When we use a
stationary bootstrap to take time dependency into account, this is no longer true as samples on the
boundary time periods are sampled less frequently. But we should expect this correlation to be small
for a long enough sample as the boundary periods are a small fraction of the total time periods.

5See Adler, Feldman and Taqqu (1998) for how distributions with heavy tails affect standard
statistical inference.
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Step II. Bootstrap

Let us arrange the pre-selected variables into Xs = [X1, X2, . . . , Xk] and the orthog-
onalized candidate variables into Xe = [Xe

k+1, X
e
k+2, . . . , X

e
M ]. Notice that for both

the residual response vector Y e,k and the two regressor matrices Xs and Xe, rows de-
note time periods and columns denote variables. We bootstrap the time periods (i.e.,
rows) to generate the empirical distributions of the summary statistics for different
regression models. In particular, for each draw of the time index tb = [tb1, t

b
2, . . . , t

b
T ]′,

let the corresponding left-hand side and right variables be Y eb, Xsb, and Xeb.

The diagram below illustrates how we bootstrap. Suppose we have five periods,
one pre-selected variable Xs, and one candidate variable Xe. The original time index
is given by [t1 = 1, t2 = 2, t3 = 3, t4 = 4, t5 = 5]′. By sampling with replacement,
one possible realization of the time index for the bootstrapped sample is tb = [tb1 =
3, tb2 = 2, tb3 = 4, tb4 = 3, tb5 = 1]′. The diagram shows how we transform the original
data matrix into the bootstrapped data matrix based on the new time index.

[Y e,k, Xs, Xe] =



ye1 xs1 xe1

ye2 xs2 xe2

ye3 xs3 xe3

ye4 xs4 xe4

ye5 xs5 xe5


︸ ︷︷ ︸

Original data matrix


t1 = 1

t2 = 2

t3 = 3

t4 = 4

t5 = 5

⇒


tb1 = 3

tb2 = 2

tb3 = 4

tb4 = 3

tb5 = 1




ye3 xs3 xe3

ye2 xs2 xe2

ye4 xs4 xe4

ye3 xs3 xe3

ye1 xs1 xe1


︸ ︷︷ ︸

Bootstrapped data matrix

= [Y eb, Xsb, Xeb]

Returning to the general case with k pre-selected variables and M − k candidate
variables, we bootstrap and then run M − k regressions. Each of these regressions
involves the projection of Y eb onto a candidate variable from the data matrix Xeb. Let
the associated summary statistics be Ψk+1,b, Ψk+2,b, . . . , ΨM,b, and let the maximum
among these summary statistics be Ψb

I , i.e.,

Ψb
I = max

j∈{1,2,...,M−k}
{Ψk+j,b}. (2)

Intuitively, Ψb
I measures the performance of the best fitting model that augments

the pre-selected regression model with one variable from the list of orthogonalized
candidate variables.

The max statistic models data snooping bias. With M −k factors to choose from,
the factor that is selected may appear to be significant through random chance. We
adopt the max statistic as our test statistic to control for multiple hypothesis testing,
similar to White (2000), Sullivan, Timmermann and White (1999) and FSW (1997).
Our bootstrap approach allows us to obtain the empirical distribution of the max
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statistic under the joint null hypothesis that none of the M −k variables is true. Due
to multiple testing, this distribution is very different from the null distribution of the
test statistic in a single test. By comparing the realized (in the data) max statistic
to this distribution, our test takes multiple testing into account.

Which statistic should we use to summarize the additional contribution of a vari-
able in the candidate list? Depending on the regression model, the choice varies. For
instance, in predictive regressions, we typically use the R2 or the adjusted R2 as the
summary statistic. In cross-sectional regressions, we use the t-statistic to test whether
the average slope is significant.6 One appealing feature of our method is that it does
not require an explicit expression for the null distribution of the test statistic. It
therefore can easily accommodate different types of summary statistics. In contrast,
FSW (1997) only works with the R2.

For the rest of the description of our method, we assume that the statistic that
measures the incremental contribution of a variable from the candidate list is given
and generically denote it as ΨI or Ψb

I for the b-th bootstrapped sample.

We bootstrap B = 10, 000 times to obtain the collection {Ψb
I , b = 1, 2, . . . , B},

denoted as (ΨI)
B, i.e.,

(ΨI)
B = {Ψb

I , b = 1, 2, . . . , B}. (3)

This is the empirical distribution of ΨI , which measures the maximal additional
contribution to the regression model when one of the orthogonalized regressors is
considered. Given that none of these orthogonalized regressors is a true predictor
in population, (ΨI)

B gives the distribution for this maximal additional contribution
when the null hypothesis is true, i.e., null of the M − k candidate variables is true.
(ΨI)

B is the bootstrapped analogue of the distribution for maximal R2’s in FSW
(1997). Similar to White (2000) and advantageous over FSW (1997), our bootstrap
method is essentially distribution-free and allows us to obtain the exact distribution
of the test statistic through sample perturbations.7

Our bootstrapped sample has the same number of time periods as the original
data. This allows us to take the sampling uncertainty of the original data into account.
When there is little time dependence in the data, we simply treat each time period
as the sampling unit and sample with replacement. When time dependence is an
issue, we use a block bootstrap, as explained in detail in the appendix. In either case,
we only resample the time periods. We keep the cross-section intact to preserve the
contemporaneous dependence among the variables.

6In cross-sectional regressions, sometimes we use the average pricing errors (e.g., mean absolute
pricing error) as the summary statistics. In this case, Ψeb should be understood as the minimum
among the average pricing errors for the candidate variables.

7We are able to generalize FSW (1997) in two significant ways. First, our approach allows us to
maintain the distributional information among the regressors, helping us avoid the Bonferroni type
of approximation in Equation (3) of FSW (1997). Second, even in the case of independence, our use
of bootstrap takes the sampling uncertainty into account, providing a finite sample version of what
is given in Equation (2) of FSW (1997).
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Step III: Hypothesis Testing and Variable Selection

Working on the original data matrix X, we can obtain a ΨI statistic that measures
the maximal additional contribution of a candidate variable. We denote this statistic
as Ψd

I . Hypothesis testing for the existence of the (k + 1)-th significant predictor
amounts to comparing Ψd

I with the distribution of ΨI under the null hypothesis, i.e.,
(ΨI)

B. With a pre-specified significance level of α, we reject the null if Ψd
I exceeds

the (1− α)-th percentile of (ΨI)
B, that is,

Ψd
I > (ΨI)

B
1−α, (4)

where (ΨI)
B
1−α is the (1− α)-th percentile of (ΨI)

B.

The result of the hypothesis test tells us whether there exists a significant predictor
among the remaining M − k candidate variables, after taking multiple testing into
account. Had the decision been positive, we declare the variable with the largest test
statistic (i.e., Ψd

I) as significant and include it in the list of pre-selected variables.
We then start over from Step I to test for the next predictor, if not all predictors
have been selected. Otherwise, we terminate the algorithm and arrive at the final
conclusion that the pre-selected k variables are the only ones that are significant.8

2.2 GRS and Panel Regression Models

Our method can be adapted to study panel regression models. The idea is to demean
factor returns such that the demeaned factors have zero impact in explaining the
cross-section of expected returns. However, their ability to explain variation in asset
returns in time-series regressions is preserved. This way, we are able to disentangle
the time-series vs. cross-sectional contribution of a candidate factor.

We start by writing down a time-series regression model,

Rit −Rft = ai +
K∑
j=1

bijfjt + εit, i = 1, . . . , N, (5)

in which the time-series of excess returns Rit − Rft are projected onto K contempo-
raneous factor returns fit. Factor returns are the long-short strategy returns corre-
sponding to zero cost investment strategies. If the set of factors are mean-variance
efficient (or, equivalently, if the corresponding beta pricing model is true), the cross-

8We plan to conduct a simulation study and benchmark our results to existing models, including
FSW (1997) and Bonferroni/Holm/BHY as in Harvey, Liu and Zhu (2015) and Harvey and Liu
(2014a). Different forms of cross-sectional and time-series dependence will be examined to evaluate
the performance of our method in comparison with others.
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section of regression intercepts should be indistinguishable from zero. This constitutes
the testable hypothesis for the Gibbons, Ross and Shanken (GRS, 1989) test.

The GRS test is widely applied in empirical asset pricing. However, several issues
hinder further applications of the test, or time-series tests in general. First, the GRS
test almost always rejects. This means that almost no model can adequately explain
the cross-section of expected returns. As a result, most researchers use the GRS test
statistic as a heuristic measure for model performance (see, e.g., Fama and French,
2015). For instance, if Model A generates a smaller GRS statistic than Model B,
we would take Model A as the “better” Model, although neither model survives the
GRS test. But does Model A “significantly” outperform B? The original GRS test
has difficulty in answering this question because the overall null of the test is that all
intercepts are strictly at zero. When two competing models both generate intercepts
that are not at zero, the GRS test is not designed to measure the relative performance
of the two models. Our method provides a solution to this problem. In particular,
for two models that are nested, it allows us to tell the incremental contribution of the
bigger model relative to the smaller one, even if both models fail to meet the GRS
null hypothesis.

Second, compared to cross-sectional regressions (e.g., the Fama-MacBeth regres-
sion), time-series regressions tend to generate a large time-series R2. This makes them
appear more attractive than cross-sectional regressions because the cross-sectional R2

is usually much lower.9 However, why would it be the case that a few factors that
explain more than 90% of the time-series variation in returns are often not even sig-
nificant in cross-sectional tests? Why would the market return explain a significant
fraction of variation in individual stock and portfolio returns in time-series regres-
sions but offer little help in explaining the cross-section? These questions point to a
general inquiry into asset pricing tests: is there a way to disentangle the time-series
vs. cross-sectional contribution of a candidate factor? Our method achieves this by
demeaning factor returns. By construction, the demeaned factors have zero impact on
the cross-section while having the same explanatory power in time-series regressions
as the original factors. Through this, we test a factor’s significance in explaining the
cross-section of expected returns, holding its time-series predictability constant.

Third, the inference for the GRS test based on asymptotic approximations can
be problematic. For instance, MacKinlay (1987) shows that the test tends to have
low power when the sample size is small. Affleck-Graves and McDonald (1989) show
that nonnormalities in asset returns can severely distort its size and/or power. Our
method relies on bootstrapped simulations and is thus robust to small-sample or
nonnormality distortions. In fact, bootstrap based resampling techniques are often
recommended to mitigate these sources of bias.

Our method tries to overcome the aforementioned shortcomings in the GRS test
by resorting to our bootstrap framework. The intuition behind our method is already

9See Lewellen, Nagel and Shanken (2010).
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given in our previous discussion on predictive regressions. In particular, we orthogo-
nalize (or more precisely, demean) factor returns such that the orthogonalized factors
do not impact the cross-section of expected returns.10 This absence of impact on the
cross-section constitutes our null hypothesis. Under this null, we bootstrap to obtain
the empirical distribution of the cross-section of pricing errors. We then compare the
realized (i.e., based on the real data) cross-section of pricing errors generated under
the original factor to this empirical distribution to provide inference on the factor’s
significance. We describe our panel regression method as follows.

Without loss of generality, suppose we only have one factor (e.g., the excess return
on the market f1t = Rmt−Rft) on the right-hand side of Equation (5). By subtracting
the mean from the time-series of f1t, we rewrite Equation (5) as

Rit −Rft = [ai + bi1E(f1t)]︸ ︷︷ ︸
Mean excess return=E(Rit−Rft)

+ bi1 [f1t − E(f1t)]︸ ︷︷ ︸
Demeaned factor return

+εit. (6)

The mean excess return of the asset can be decomposed into two parts. The first part
is the time-series regression intercept (i.e., ai), and the second part is the product of
the time-series regression slope and the average factor return (i.e., bi1E(f1t)).

In order for the one-factor model to work, we need ai = 0 across all assets.
Imposing this condition in Equation (6), we have bi1E(f1t) = E(Rit−Rft). Intuitively,
the cross-section of bi1E(f1t)’s need to line up with the cross-section of expected
asset returns (i.e., E(Rit −Rft)) in order to fully absorb the intercepts in time-series
regressions. This condition is not easy to satisfy in time-series regressions because
the cross-section of risk loadings (i.e., bi) are determined by individual time-series
regressions. The risk loadings may happen to line up with the cross-section of asset
returns and thereby making the one-factor model work or they may not. This explains
why it is possible for some factors (e.g., the market factor) to generate large time-series
regression R2’s but do little in explaining the cross-section of asset returns.

Another important observation from Equation (6) is that by setting E(f1t) = 0,
factor f1t exactly has zero impact on the cross-section of expected asset returns.
Indeed, if E(f1t) = 0, the cross-section of intercepts from time-series regressions (i.e.,
ai) exactly equal the cross-section of average asset returns (i.e., E(Rit − Rft)) that
the factor model is supposed to help explain in the first place. On the other hand,
whether or not the factor mean is zero does not matter for time-series regressions. In
particular, both the regression R2 and the slope coefficient (i.e., bi1) are kept intact
when we alter the factor mean.

The above discussion motivates our test design. For the one-factor model, we
define a “pseudo” factor f̃1t by subtracting the in-sample mean of f1t from its time-

10More precisely, our method makes sure that the orthogonalized factors have a zero impact on
the cross-section of expected returns unconditionally. This is because panel regression models with
constant risk loadings focus on unconditional asset returns.
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series. This demeaned factor maintains all the time-series predictability of f1t but has
no role in explaining the cross-section of expected returns. With this pseudo factor, we
bootstrap to obtain the distribution of a statistic that summarizes the cross-section of
mispricing. Candidate statistics include mean/median absolute pricing errors, mean
squared pricing errors, and t-statistics. We then compare the realized statistic for the
original factor (i.e., f1t) to this bootstrapped distribution.

Our method generalizes straightforwardly to the situation when we have multiple
factors. Suppose we have K pre-selected factors and we want to test the (K + 1)-th
factor. We first project the (K + 1)-th factor onto the pre-selected factors through a
time-series regression. We then use the regression residual as our new pseudo factor.
This is analogous to the previous one-factor model example. In the one-factor model,
demeaning is equivalent to projecting the factor onto a constant.

With this pseudo factor, we bootstrap to generate the distribution of pricing errors.
In this step, the difference from the one-factor case is that, for both the original
regression and the bootstrapped regressions based on the pseudo factor, we always
keep the original K factors in the model. This way, our test captures the incremental
contribution of the candidate factor. When multiple testing is the concern and we
need to choose from a set of candidate variables, we can rely on the max statistic (in
this case, the min statistic since minimizing the average pricing error is the objective)
discussed in the previous section to provide inference.

2.3 Cross-sectional Regressions

Our method can be adapted to test factor models in cross-sectional regressions. In
particular, we show how an adjustment of our method applies to Fama-MacBeth type
of regressions (FM, Fama and MacBeth, 1973) — one of the most important testing
frameworks that allow time-varying risk loadings.

One hurdle in applying our method to FM regressions is the time-varying cross-
sectional slopes. In particular, separate cross-sectional regressions are performed in
each time period to capture the variability in regression slopes. We test the signif-
icance of a factor by looking at the average slope coefficient. Therefore, in the FM
framework, the null hypothesis is that the slope is zero in population. We adjust our
method such that this condition exactly holds in-sample for the adjusted regressors.

Suppose the vectors of residual excess returns are Y1, Y2, . . . , YT and the corre-
sponding vectors of risk loadings (i.e., β’s) for a certain factor are X1, X2, . . . , XT .11

Suppose there are ni stocks or portfolios in the cross-section at time i, i = 1, . . . , T .
Notice that the number of stocks or portfolios in the cross-section may vary across

11The vectors of residual excess returns should be understood as the FM regression residuals
based on a pre-selected set of variables.
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time so the vectors of excess returns may not have the same length. We start by
running the following regressions:

X1

X2
...
XT


∑T

i=1 ni×1

=


φ1

φ2
...
φT


∑T

i=1 ni×1

+ ξ1×1 ·


Y1
Y2
...
YT


∑T

i=1 ni×1

+


ε1
ε2
...
εT


∑T

i=1 ni×1

, (7)

where [φ′1, φ
′
2, . . . , φ

′
T ]′ is the vector of intercepts that are time-dependent, ξ is a scalar

that is time-independent, and [ε′1, ε
′
2, . . . , ε

′
T ]′ is the vector of projected regressors that

will be used in the follow-up bootstrap analysis. The components in the vector of
intercepts (i.e., φi, i = 1, . . . , T ) are the same, so within each period we have the same
intercept across stocks or portfolios.

Notice that the above regression pools returns and factor loadings together to
estimate a single slope parameter, similar to what we do in predictive regressions.
What is different, however, is the use of separate intercepts for different time periods.
This is natural since the FM procedure allows time-varying intercepts and slopes. To
purge the variation in the left-hand size variable out of the right-hand variable, we
need to allow for time-varying intercepts as well. Mathematically, the time-dependent
intercepts allow the regression residuals to sum up to zero in each period. This
property proves very important in that it allows us to form the FM null hypothesis
in-sample, as we shall see later.

Next, we scale each residual vector ε by its sum of squares ε′ε and generate the
orthogonalized regressor vectors:

Xe
i = εi/(ε

′
iεi), i = 1, 2, . . . , T. (8)

These orthogonalized regressors are the FM counterparts of the orthogonalized regres-
sors in predictive regressions. They satisfy the FM null hypothesis in cross-sectional
regressions. In particular, suppose we run OLS with these orthogonalized regressor
vectors for each period:

Yi = µi + γiX
e
i + ηi, i = 1, 2, . . . , T, (9)

where µi is the ni × 1 vector of intercepts, γi is the scalar slope for the i-th period,
and ηi is the ni × 1 vector of residuals. We can show that the following FM null
hypothesis holds in-sample:

T∑
i=1

γi = 0. (10)
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The above orthogonalization is the only step that we need to adapt to apply our
method to the FM procedure. The rest of our method follows for factor selection in
FM regressions. In particular, with a pre-selected set of right-hand side variables, we
orthogonalize the rest of the right-hand side variables to form the joint null hypothesis
that none of them is a true factor. We then bootstrap to test this null hypothesis.
If we reject, we add the most significant one to the list of pre-selected variables and
start over to test the next variable. Otherwise, we stop and end up with the set of
pre-selected variables.

2.4 Discussion

Across the three different scenarios, our orthogonalization works by adjusting the
right-hand side or forecasting variables so they appear irrelevant in-sample. That
is, they achieve what are perceived as the null hypotheses in-sample. However, the
null differs in different regression models. As a result, a particular orthogonalization
method that works in one model may not work in another model. For instance, in the
panel regression model the null is that a factor does not help reduce the cross-section
of pricing errors. In contrast, in Fama-MacBeth type of cross-sectional regressions, the
null is that the time averaged slope coefficients is zero. Following the same procedure
as what we do in panel regressions will not achieve the desired null in cross-sectional
regressions.

3 Results

3.1 Luck versus Skill: A Motivating Example

We first study mutual fund performance to illustrate the two key ingredients in our
approach: orthogonalization and sequential selection. For performance evaluation,
orthogonalization amounts to setting the in-sample alphas relative to a benchmark
model at zero. By doing this, we are able to make inference on the overall performance
of mutual funds by bootstrapping from the joint null that all funds generate a mean
return of zero. The approach follows FF (2010). We then add something new. We use
sequential selection to estimate the fraction of funds that generate nonzero returns,
that is, funds that do not follow the null hypothesis.

We obtain the mutual fund data used in Ferson and Yong (2014). Their fund data
is from the Center for Research in Security Prices Mutual Fund database. They focus
on active, domestic equity funds covering the 1984-2011 period. To mitigate omission
bias (Elton, Gruber and Blake, 2001) and incubation and back-fill bias (Evans, 2010),
they apply several screening procedures. They limit their tests to funds that have
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initial total net assets (TNA) above $10 million and have more than 80% of their
holdings in stock in their first year to enter our data. They combine multiple share
classes for a fund and use TNA-weighted aggregate share class. We require that a
fund has at least twelve months of return history to enter our test. This leaves us
with a sample of 3716 mutual funds for the 1984-2011 period.12

We use the three-factor model in Fama and French (1993) as our benchmark model.
For each fund in our sample, we project its returns in excess of the Treasury bill rates
onto the three factors and obtain the regression intercept — alpha. We then calculate
the t-statistic for the alpha (t(α)), which is usually called the precision-adjusted alpha.

The estimation strategy is as follows. We start from the overall null hypothesis
that all funds generate an alpha of zero. To create this null for the realized data, we
subtract the in-sample fitted alphas from fund returns so that each fund exactly has
an alpha of zero. We then run bootstrapped simulations to generate a distribution of
the cross-section of t(α)’s. In particular, for each simulation run we randomly sample
the time periods and then calculate the cross-section of t(α)’s. In our simulations,
we make sure that the same random sample of months applies to all funds, similar to
Fama and French (2010). To draw inference on the null hypothesis, we compare the
empirical distribution of the cross-section of t(α)’s with the realized t(α) cross-section
for the original data.

Following White (2000), we focus on the extreme percentiles to provide inference.
White (2000) uses the max statistic. However, the max statistic is problematic for
unbalanced panels, like the mutual fund data. This is because funds with a short
return history may have few nonrepetitive observations in a bootstrapped sample.
This leads to extreme values of test statistics. To alleviate this, we can require a long
return history (e.g., five years). But this leaves us with too few funds in the data.
We choose to use the extreme percentiles to provide robust inference.

The first row of Table 1 presents the results. We focus on the 0.5th and 99.5th
percentiles.13 The 99.5th percentile of t(α) for the original mutual fund data is
2.688, indicating a single test p-value of 0.4%. Without multiple testing concerns, we
would declare the fund with such a high t(α) significant. With multiple testing, the
bootstrapped p-value is 56.4%. This means that, by randomly sampling from the null
hypothesis that all funds are generating a zero alpha, the chance for us to observe a
99.5th percentile that is at least 2.688 is 56.4%. We therefore fail to reject the null
and conclude that there are no outperforming funds. Our results are consistent with
Fama and French (2010), who also found that under the overall null of zero fund
returns, there is no evidence for the existence of outperforming funds.

12We thank Yong Chen for providing us with the mutual fund data used in Ferson and Yong
(2014).

13Some funds in our sample have short histories. When we bootstrap, the number of time periods
with distinct observations could be even smaller because we may sample the same time period
multiple times. The small sample size leads to extreme values of t(α). To alleviate this problem, we
truncate the top and bottom 0.5% of t(α)’s and focus on the 0.5th and 99.5th percentile.
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Table 1: Tests on Mutual Funds, 1984-2011

Test results on the cross-section of mutual funds. We use
a three-factor benchmark model to evaluate fund perfor-
mance. “Marginal t(α)” is the t(α) cutoff for the origi-
nal data. “P-value” is the bootstrapped p-value either for
outperformance (i.e., the 99.5th percentile) or underperfor-
mance (i.e., the rest of the percentiles). “Average t(α)”
calculates the mean of t(α) conditional on falling above
(i.e., the 99.5th percentile) or below (i.e., the rest of the
percentiles) the corresponding t(α) percentiles.

Percentile Marginal P-value Average
t(α) t(α)

Outperform
99.5 2.688 0.564 2.913

Underperform
0.5 -4.265 0.006 -4.904
1.0 -3.946 0.027 -4.502
2.0 -3.366 0.037 -4.074
5.0 -3.216 0.041 -3.913
8.0 -2.960 0.050 -3.603
9.0 -2.887 0.054 -3.527
10.0 -2.819 0.055 -3.458

On the other hand, the 0.5th percentile in the data is -4.265 and its bootstrapped
p-value is 0.6%. At the 5% significance level, we would reject the null and conclude
that there exist funds that are significantly underperforming. Until now, we exactly
follow the procedure in FF (2010) and essentially replicate their main results.

Rejecting the overall null of no performance is only the first step. Our method
allows us to sequentially find the fraction of funds that are underperforming. By
doing this, we step beyond Fama and French (2010). In particular, we sequentially
add back the in-sample fitted alphas to funds. Suppose we add back the alphas for the
bottom q percent of funds. We then redo bootstrap to generate a new distribution
of the cross-section of t(α)’s. Notice that this distribution is essentially based on
the hypothesis that the bottom q percent of funds are indeed underperforming, their
alphas equal their in-sample fitted alphas, and the top 1−q percent of funds generate
a mean of zero. To test this hypothesis, we compare the q-th percentile of t(α) for
the original data with the bootstrapped distribution of the q-th percentile.

Table 1 shows the results. When only the bottom 1% are assumed to be underper-
forming, the bootstrapped p-value for the 1st percentile is 2.7%. This is higher than
the p-value for the 0.5th percentile (i.e., 0.6%) but still lower than the 5% significance
level. We gradually increase the number of funds that are underperforming. When
the bottom 8% of funds are assumed to be underperforming, the bootstrapped p-value
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for the 8th percentile is exactly 5%. We therefore conclude that 8% of mutual funds
are significantly underperforming. Among this group of underperforming funds, the
average t(α) is -3.603. The marginal t-ratio is -2.960, which corresponds to a single
test p-value of 0.15%. Therefore, due to multiple testing, a fund needs to overcome a
more stringent hurdle in order to be considered underperforming.

We compare our results to existing studies. FF (2010) focus on testing under the
overall null of no skill and do not offer an estimate of the fraction of underperform-
ing/outperforming funds. They also examine the dispersion in fund alphas. They
assume that fund alphas follow a normal distribution and use bootstrap to estimate
the dispersion parameter. Their approach is parametric in nature and differs from
ours.

Our results are broadly consistent with Ferson and Yong (2014). By refining the
false discovery rate approach in Barras, Scaillet and Wermers (2010), they also find
that mutual funds are best classified into two groups: one group generates a mean
return of zero and the other generates negative returns. However, their estimate the
fraction of significantly underperforming funds (20%) differs from ours (8%). They
follow Barras, Scaillet and Wermers (2010) and assume a parametric distribution of
the means of returns for underperforming funds. We do not need to make such a
distributional assumption. Rather, we rely on the in-sample fitted means to estimate
this distribution in a nonparametric fashion.

Figure 1 and 2 provide a visualization of how our method is implemented. Figure
1 shows that under the overall null of no outperforming/underperforming funds, the
99.5th percentile of t(α) falls below the 95% confidence band and the 0.5th percentile
falls below the 5% confidence band. In Panel A of Figure 2, we set the alphas for
the bottom 1% of funds at their in-sample fitted values. Under this, the simulated
5% confidence band is below the band under the overall null but still above the 1st
percentile of t(α). In Panel B, when the bottom 8% are classified as underperforming
funds, the 8th percentile of t(α) meets the 5% confidence band.
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Figure 1: All at Zero
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Figure 2: Estimating the Fraction of Underperforming Funds
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It is important to link what we learn from this example to the insights of our
method in general. First, othogonalization amounts to subtracting the in-sample
alpha estimate from fund returns in the context of performance evaluation. This helps
create “pseudo” funds that behave just like the funds observed in the sample but have
an alpha of zero. This insight has recently been applied by the literature to study
fund performance. Our focus is on regression models. In particular, we orthogonalize
regressors such that their in-sample slopes and risk premium estimates exactly equal
zero for predictive regressions and Fama-MacBeth regressions, respectively. For panel
regression models, we demean factors such that they have a zero impact of the cross-
section of expected returns.

Second, in contrast to recent papers studying mutual fund performance, we in-
crementally identify the group of underperforming funds through hypothesis testing.
The key is to form a new null hypothesis at each step by including more underperform-
ing funds and test the significance of the marginal fund through bootstrapping. Our
procedure provides additional insights to the performance evaluation literature. We
now apply this insight to the problem of variable selection in regression models. Two
features make our method more attractive compared to existing methods. Through
bootstrapping, we avoid the need of appealing to asymptotic theories to provide in-
ference. In addition, our method can easily accommodate different types of summary
statistics that are used to differentiate candidate models (e.g., R2, t-statistic, etc.).

3.2 Identifying Factors

Next, we provide an example that focuses on candidate risk factors. In principle, we
can apply our method to the grand task of sorting out all the risk factors that have
been proposed in the literature. One attractive feature of our method is that it allows
the number of risk factors to be larger than the number of test portfolios, which is
infeasible in conventional multiple regression models. However, we do not pursue this
in the current paper but instead focus on an illustrative example. The choice of the
test portfolios is a major confounding issue. Different test portfolios lead to different
results. In contrast, individual stocks avoid the arbitrary portfolio construction. We
discuss the possibility of applying our method to individual stocks in the next section.
Our illustrative example in this section shows how our method can be applied based
on some popular test portfolios and a set of prominent risk factors.

In particular, we apply our panel regression method to 13 risk factors that are
proposed by Fama and French (2015), Frazzini and Pedersen (2014), Novy-Marx
(2013), Pastor and Stambaugh (2003), Carhart (1997), Asness, Frazzini and Pedersen
(2013), Hou, Xue and Zhang (2015), and Harvey and Siddique (2000).14 For test

14The factors in Fama and French (2015), Hou, Xue and Zhang (2015) and Harvey and Siddique
(2000) are provided by the authors. The factors for the rest of the papers are obtained from the
authors’ webpages. Across the 13 factors, the investment factor and the profitability factor in Hou,
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portfolios, we use the standard 25 size and book-to-market sorted portfolios that are
available from Ken French’s on-line data library.

We first provide acronyms for factors. Fama and French (2015) add profitability
(rmw) and investment (cma) to the three-factor model of Fama and French (1993),
which has market (mkt), size (smb) and book-to-market (hml) as the pricing factors.
Hou, Xue and Zhang (2015) propose similar profitability (roe) and investment (ia)
factors. Other factors include betting againist beta (bab) in Frazzini and Pedersen
(2014), gross profitability (gp) in Novy-Marx (2013), Pastor and Stambaugh liquidity
(psl) in Pastor and Stambaugh (2003), momentum (mom) in Carhart (1997), quality
minus junk (qmj ) in Asness, Frazzini and Pedersen (2013), and co-skewness (skew) in
Harvey and Siddique (2000). We treat these 13 factors as candidate risk factors and
incrementally select the group of “true” factors. True is in quotation marks because
there are a number of other issues such as the portfolios that are used to estimate the
model.15 Hence, this example should only be viewed as illustrative of a new method.
We focus on tests that rely on time-series regressions, similar to Fama and French
(2015).

Table 2 presents the summary statistics on portfolios and factors. The 25 portfolios
display the usual monotonic pattern in mean returns along the size and book-to-
market dimension that we try to explain. The 13 risk factors generate sizable long-
short strategy returns. Six of the strategy returns generate t-ratios above 3.0 which
is the level advocated by Harvey, Liu and Zhu (2015) to take multiple testing into
account. The correlation matrix shows that book-to-market (hml) and Fama and
French (2015)’s investment factor (cma) have a correlation of 0.7, Fama and French
(2015)’s profitability factor (rmw) and quality minus junk (qmj ) have a correlation of
0.76, and Hou, Xue and Zhang (2015)’s investment factor (ia) and Fama and French
(2015)’s investment factor (cma) have a correlation of 0.90. These high levels of
correlations might pose a challenge for standard estimation approaches. However,
our method takes the correlation into account.

To measure the goodness-of-fit of a candidate model, we need a performance met-
ric. Similar to Fama and French (2015), we define four intuitive metrics that capture
the cross-sectional goodness-of-fit of a regression model. For a panel regression model
with N portfolios, let the regression intercepts be {ai}Ni=1 and the cross-sectionally
adjusted mean portfolio returns (i.e., the average return on a portfolio minus the
average of the cross-section of portfolio returns) be {r̄i}Ni=1. The four metrics are the
median absolute intercept (ma

1), the mean absolute intercept (mb
1), the mean absolute

intercept over the average absolute value of r̄i (m2), and the mean squared intercept
over the average squared value of r̄i (m3). Fama and French (2015) focus on the last

Xue and Zhang (2015) have the shortest length (i.e., January 1972 - December 2012). We therefore
focus on the January 1972 to December 2012 period to make sure that all factors have the same
sampling period.

15Harvey and Liu (2014b) explore the portfolio selection issue in detail. They advocate the use
of individual stocks to avoid subjectivity in the selection of the characteristics used to sort the test
portfolios.
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Table 2: Summary Statistics, January 1972 - December 2012

Summary statistics on portfolios and factors. We report the mean annual returns for Fama-
French size and book-to-market sorted 25 portfolios and the five risk factors in Fama and
French (2015) (i.e., excess market return (mkt), size (smb), book-to-market (hml), prof-
itability (rmw), and investment (cma)), betting against beta (bab) in Frazzini and Pedersen
(2014), gross profitability (gp) in Novy-Marx (2013), Pastor and Stambaugh liquidity (psl)
in Pastor and Stambaugh (2003), momentum (mom) in Carhart (1997), and quality minus
junk (qmj ) in Asness, Frazzini and Pedersen (2013), investment (ia) and profitability (roe)
in Hou, Xue and Zhang (2015), and co-skewness (skew) in Harvey and Siddique (2000). We
also report the correlation matrix for factor returns. The sample period is from January
1972 to December 2012.

Panel A: Portfolio Returns

Low 2 3 4 High
Small 0.023 0.091 0.096 0.116 0.132

2 0.050 0.081 0.108 0.108 0.117
3 0.055 0.088 0.090 0.101 0.123
4 0.066 0.064 0.081 0.096 0.097

Big 0.050 0.057 0.052 0.063 0.068

Panel B.1: Factor Returns

mkt smb hml mom skew psl roe ia qmj bab gp cma rmw
Mean 0.057 0.027 0.049 0.086 0.032 0.056 0.070 0.054 0.046 0.103 0.037 0.045 0.035
t-stat [2.28] [1.63] [2.96] [3.51] [2.34] [2.88] [4.89] [5.27] [3.36] [5.49] [2.88] [4.22] [2.88]

Panel B.2: Factor Correlation Matrix

mkt smb hml mom skew psl roe ia qmj bab gp cma rmw
mkt 1.00
smb 0.25 1.00
hml -0.32 -0.11 1.00
mom -0.14 -0.03 -0.15 1.00
skew -0.05 -0.00 0.24 0.04 1.00
psl -0.03 -0.03 0.04 -0.04 0.10 1.00
roe -0.18 -0.38 -0.09 0.50 0.20 -0.08 1.00
ia -0.37 -0.15 0.69 0.04 0.20 0.03 0.06 1.00
qmj -0.52 -0.51 0.02 0.25 0.16 0.02 0.69 0.13 1.00
bab -0.10 -0.01 0.41 0.18 0.25 0.06 0.27 0.34 0.19 1.00
gp 0.07 0.02 -0.31 -0.01 0.01 -0.06 0.32 -0.22 0.48 -0.09 1.00
cma -0.40 -0.05 0.70 0.02 0.09 0.04 -0.08 0.90 0.05 0.31 -0.29 1.00
rmw -0.23 -0.39 0.15 0.09 0.29 0.02 0.67 0.09 0.78 0.29 0.47 -0.03 1.00

three metrics (i.e., mb
1, m2 and m3). We augment them with ma

1, which we believe is
more robust to outliers compared to mb

1.
16 When the null hypothesis of the GRS test

is true, the cross-section of intercepts should all be zero and so are the four metrics.

16See Harvey and Liu (2014b) for an exploration on the relative performances of different metrics.
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We also include the standard GRS test statistic. However, our othogonalization
design does not guarantee that the GRS test statistic of the baseline model stays the
same as the test statistic when we add an othogonalized factor to the model. The
reason is that, while the othogonalized factor by construction has zero impact on
the cross-section of expected returns, it may still affect the error covariance matrix.
Since the GRS statistic uses the error covariance matrix to weight the regression
intercepts, it changes as the estimate for the covariance matrix changes. We think
the GRS statistic is not appropriate in our framework as the weighting function is no
longer optimal and may distort the comparison between candidate models. Indeed,
for two models that generate the same regression intercepts, the GRS test is biased
towards the model that explains a smaller fraction of variance in returns in time-series
regressions. To avoid this bias, we focus on the four aforementioned metrics that do
not rely on a model-based weighting matrix.

We start by testing whether any of the 13 factors is individually significant in
explaining the cross-section of expected returns. Panel A in Table 3 presents the
results. Across the four metrics, the market factor appears to be the best among the
candidate factors. For instance, it generates a median absolute intercept of 0.285%
per month, much lower than what the other factors generate. To evaluate the signifi-
cance of the market factor, we follow our method and orthogonalize the 13 factors so
they have a zero impact on the cross-section of expected returns in-sample. We then
bootstrap to obtain the empirical distributions of the minimums of the test statistics
under the three metrics. For instance, the median of the minimal ma

1 in the boot-
strapped distribution is 0.598%. Evaluating the minimum statistics based on the real
data against the bootstrapped distributions, the corresponding p-values are 3.9% for
ma

1, 2.5% for mb
1, 5.2% for m2, and 10.0% for m3. In general, we believe that the first

two metrics are more powerful than the rest of the metrics.17 Based on the first two
metrics, we would conclude that the market factor is significant at the 5% significance
level.

With the market factor identified as a “true” factor, we include it in the baseline
model and continue to test the other 12 factors. We orthogonalize these 12 factors
against the market factor and obtain the residuals. By construction, these residuals
maintain the time-series predictability of the original factors but have no impact
on the cross-section of pricing errors (because the residuals are mean zero) that are
produced when the market factor is used as the single factor. Panel B presents the
results. This time, cma appears to be the best factor. It dominates the other factors
across all five summary statistics. However, in terms of the economic magnitude, the
win of cma against other factors is less decisive than the case for mkt. In particular,
the second best (hml) combined with mkt (declared significant at the previous stage)
generates a median absolute intercept that is only about one basis point larger than
that generated by cma and the mkt (i.e., 0.120% - 0.112% = 0.008%). This is not
surprising given the similarity in the construction of cma and hml and their high

17See Harvey and Liu (2014b) for the demonstration.

22



level of correlation. We choose to respect the statistical evidence and declare cma as
significant in addition to the market factor.18

Notice that in Panel B, with mkt as the only factor, the median GRS is 5.272 in
the bootstrapped distribution, much larger than 4.082 in Panel A, which is the GRS
for the real data with mkt as the only factor. This means that by adding one of the
demeaned factors (i.e., demeaned smb, hml, etc.), the GRS becomes much larger. By
construction, these demeaned factors have no impact on the intercepts. The only way
they can affect GRS is through the error covariance matrix. Hence, the demeaned
factors make the GRS larger by reducing the error variance estimates. This insight
also explains the discrepancy between mb

1 and GRS in Panel A: mkt, which implies
a much smaller mean absolute intercept in the cross-section, has a larger GRS than
bab as mkt absorbs a larger fraction of variance in returns in time-series regressions
and thereby putting more weight on regression intercepts compared to bab. The
weighting in the GRS does not seem appropriate for model comparison when none of
the candidate models is expected to be the true model, i.e., the true underlying factor
model that fully explains the cross-section of expected returns. Between two models
that imply the same time-series regression intercepts, it favors the model that explains
a smaller fraction of variance in returns. This does not make sense. We choose to
focus on the four metrics that do not depend on the error covariance matrix estimate.

Now with mkt and cma both in the list of pre-selected variables, we proceed to
test the other 11 variables. Panel C presents the results. Across the 11 variables,
smb appears to be the best across the first three metrics. However, the corresponding
p-values are 13.9%, 5.3% and 17.2%, respectively. Judging at the conventional level,
we declare smb as insignificant and stop at this stage. We declare mkt and cma as the
only two significant factors, with the important caveat that the results are conditional
on the particular set of test portfolios.

18Factor hml was published in 1992 and cma in 2015. There is certainly a case to be made for
selecting the factor with the longer out of sample track record.
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Table 3: How Many Factors?

Testing results on 13 risk factors. We use Fama-French size and book-to-market sorted
portfolios to test ten risk factors. They are excess market return (mkt), size (smb), book-
to-market (hml), profitability (rmw), and investment (cma)) in Fama and French (2015),
betting against beta (bab) in Frazzini and Pedersen (2014), gross profitability (gp) in Novy-
Marx (2013), Pastor and Stambaugh liquidity (psl) in Pastor and Stambaugh (2003), mo-
mentum (mom) in Carhart (1997), and quality minus junk (qmj ) in Asness, Frazzini and
Pedersen (2013), investment (ia) and profitability (roe) in Hou, Xue and Zhang (2015), and
co-skewness (skew) in Harvey and Siddique (2000). The baseline model refers to the model
that includes the pre-selected risk factors. We focus on the panel regression model described
in Section 2.2. The four performance metrics are the median absolute intercept (ma

1), the
mean absolute intercept (m1), the mean absolute intercept over the average absolute value
of the demeaned portfolio return (m2), and the mean squared intercept over the average
squared value of the demeaned portfolio returns (m3). GRS reports the Gibbons, Ross and
Shanken (1989) test statistic.

ma
1(%) mb

1(%) m2 m3 GRS

Panel A: Baseline = No Factor

Real data mkt 0.285 0.277 1.540 1.750 4.082
smb 0.539 0.513 2.851 5.032 4.174
hml 0.835 0.817 4.541 12.933 3.897
mom 0.873 0.832 4.626 13.965 4.193
skew 0.716 0.688 3.822 9.087 4.228
psl 0.726 0.699 3.887 9.548 4.139
roe 0.990 1.011 5.623 21.191 4.671
ia 1.113 1.034 5.750 21.364 4.195
qmj 1.174 1.172 6.516 28.427 5.271
bab 0.715 0.725 4.029 9.801 3.592
gp 0.692 0.663 3.688 8.816 3.977
cma 0.996 0.956 5.318 17.915 4.004
rmw 0.896 0.881 4.900 15.647 4.135
Min 0.285 0.277 1.540 1.750 3.592

Bootstrap Median of min 0.598 0.587 3.037 5.910 5.509
p-value 0.039 0.025 0.052 0.100 0.012

Panel B: Baseline = mkt

Real data smb 0.225 0.243 1.348 1.633 4.027
hml 0.120 0.150 0.836 0.341 3.397
mom 0.301 0.328 1.825 2.469 3.891
skew 0.239 0.236 1.314 1.292 3.979
psl 0.258 0.265 1.474 1.611 3.893
roe 0.332 0.363 2.020 3.846 4.202

Continued on next page
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Table 3 – Continued from previous page
ma

1(%) mb
1(%) m2 m3 GRS

ia 0.166 0.163 0.907 0.358 3.320
qmj 0.344 0.398 2.213 4.615 4.300
bab 0.121 0.152 0.844 0.382 3.262
gp 0.305 0.314 1.745 2.148 3.785
cma 0.112 0.130 0.721 0.153 3.205
rmw 0.225 0.285 1.586 2.204 3.723
Min 0.112 0.130 0.721 0.153 3.205

Bootstrap Median of min 0.220 0.247 1.262 1.268 5.272
p-value 0.022 0.002 0.001 0.000 0.006

Panel C: Baseline = mkt + cma

Real data smb 0.074 0.102 0.569 0.319 3.174
hml 0.109 0.130 0.720 0.188 3.199
mom 0.112 0.141 0.785 0.253 2.880
skew 0.124 0.126 0.702 0.123 3.281
psl 0.113 0.128 0.711 0.128 3.096
roe 0.194 0.249 1.382 1.584 2.923
ia 0.167 0.168 0.936 0.432 3.376
qmj 0.327 0.307 1.707 2.494 2.978
bab 0.147 0.129 0.715 0.114 3.067
gp 0.084 0.105 0.581 -0.031 2.460
rmw 0.181 0.197 1.093 0.813 2.900
Min 0.074 0.102 0.569 -0.031 2.460

Bootstrap Median of min 0.102 0.131 0.674 0.264 4.372
p-value 0.139 0.053 0.172 0.006 0.004

3.3 Individual stocks

Using characteristics-sorted portfolios may be inappropriate because some of these
portfolios are also used in the construction of risk factors. Projecting portfolio re-
turns onto risk factors that are themselves functions of these portfolios may bias
the results. Ahn, Conrad and Dittmar (2009) propose a characteristics-independent
way of forming test portfolios. Ecker (2013) suggests the use of randomly generated
portfolios that reduce the noise in individual stocks while at the same time do not
bias towards existing risk factors. However, the complexity involved in constructing
these test portfolios keeps researchers from applying these methods in practice. As a
result, the majority of researchers still use the readily available characteristics-sorted
portfolios as test portfolios.
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Our model can potentially bypass this issue by using individual stocks as test
assets. Intuitively, individual stocks should provide the most reliable and unbiased
source of information in asset pricing tests. The literature has argued that individual
stocks are too noisy to provide powerful tests. Our panel regression model allows us
to construct test statistics that are robust to noisy firm-level return observations (see
Harvey and Liu (2014b)).

4 Conclusions

We present a new method that allows researchers to meet the challenge of multiple
testing in financial economics. Our method is based on a bootstrap and allows for gen-
eral distributional characteristics, cross-sectional as well as time-series dependency,
and a range of test statistics.

Our applications at this point are only illustrative. However, our method is gen-
eral. It can be used for time-series prediction. The method applies to the evaluation
of fund management. Finally, it allows us, in an asset pricing application, to address
the problem of lucky factors. In the face of hundreds of candidate variables, some
factors will appear significant by chance. Our method provides a new way to separate
the factors that are lucky from the ones that explain the cross-section of expected
returns.

Finally, while we focus on the asset pricing implications, our technique can be
applied to any regression model that faces the problem of multiple testing. Our
framework applies to many important areas of corporate finance such as the variables
that explain the cross-section of capital structure. Indeed, there is a growing need for
new tools to navigate the vast array of “big data”. We offer a new compass.
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A Proof for Fama-MacBeth Regressions

The corresponding objective function for the regression model in equation (7) is given
by:

L =
T∑
i=1

[Xi − (φi + ξYi)]
′[Xi − (φi + ξYi)]. (11)

Taking first order derivatives with respect to {φi}Ti=1 and ξ, respectively, we have

∂L
∂φi

=
T∑
i=1

ι′iεi = 0, i = 1, . . . , T, (12)

∂L
∂ξ

=
T∑
i=1

Y ′i εi = 0, (13)

where ιi is a ni × 1 vector of ones. Equation (12) says that the residuals within
each time period sum up to zero, and equation (13) says that the Yi’s are on average
orthogonal to the εi’s across time. Importantly, Yi is not necessarily orthogonal
to εi within each time period. As explained in the main text, we next define the
orthogonalized regressor Xe

i as the rescaled residuals, i.e.,

Xe
i = εi/(ε

′
iεi), i = 1, . . . , T. (14)

Solving the OLS equation (9) for each time period, we have:

γi = (Xe
i
′Xe

i )
−1Xe

i
′(Yi − µi), (15)

= (Xe
i
′Xe

i )
−1Xe

i
′Yi − (Xe

i
′Xe

i )
−1Xe

i
′µi, i = 1, . . . , T. (16)

We calculate the two components in equation (16) separately. First, notice Xe
i is a

rescaled version of εi. By equation (12), the second component (i.e., (Xe
i
′Xe

i )
−1Xe

i
′µi)

equals zero. The first component is calculated as:

(Xe
i
′Xe

i )
−1Xe

i
′Yi = [(

εi
ε′iεi

)′(
εi
ε′iεi

)]−1(
εi
ε′iεi

)′Yi, (17)

= ε′iYi, i = 1, . . . , T, (18)

where we again use the definition of Xe
i in equation (17). Hence, we have:

γi = ε′iYi, i = 1, . . . , T. (19)
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Finally, applying equation (13), we have:

T∑
i=1

γi =
T∑
i=1

ε′iYi = 0.

B The Block Bootstrap

Our block bootstrap follows the so-called stationary bootstrap proposed by Politis and
Romano (1994) and subsequently applied by White (2000) and Sullivan, Timmermann
and White (1999). The stationary bootstrap applies to a strictly stationary and
weakly dependent time-series to generate a pseudo time series that is stationary. The
stationary bootstrap allows us to resample blocks of the original data, with the length
of the block being random and following a geometric distribution with a mean of 1/q.
Therefore, the smoothing parameter q controls the average length of the blocks. A
small q (i.e., on average long blocks) is needed for data with strong dependence and a
large q (i.e., on average short blocks) is appropriate for data with little dependence.
We describe the details of the algorithm in this section.

Suppose the set of time indices for the original data is 1, 2, . . . , T . For each boot-
strapped sample, our goal is to generate a new set of time indices {θ(t)}Tt=1. Following
Politis and Romano (1994), we first need to choose a smoothing parameter q that can
be thought of as the reciprocal of the average block length. The conditions that
q = qn needs to satisfies are:

0 < qn ≤ 1, qn → 0, nqn →∞.

Given this smoothing parameter, we follow the following steps to generate the new
set of time indices for each bootstrapped sample:

• Step I. Set t = 1 and draw θ(1) independently and uniformly from 1, 2, . . . , T .

• Step II. Move forward one period by setting t = t+1. Stop if t > T . Otherwise,
independently draw a uniformly distributed random variable U on the unit
interval.

1. If U < q, draw θ(t) independently and uniformly from 1, 2, . . . , T .

2. Otherwise (i.e., U ≥ q), set θ(t) = θ(t− 1) + 1 if θ(t) ≤ T and θ(t) = 1 if
θ(t) > T .

• Step III. Repeat step II.
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For most of our applications, we experiment with different levels of q and show
how our results change with respect to the level of q.
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C FAQ

C.1 General Questions

• Do we want the min (max) or, say, the 5th (95th) percentile? (Section 2)

Although the percentiles could be more robust to outliers, we think that the
extremes are more powerful test statistics. For instance, suppose there is only
one variable that is significant among 1,000 candidate variables. Then we are
more likely to miss this variable (i.e., failing to reject the null that all 1,000 vari-
ables are insignificant) using the percentiles than using the extremes. Following
White (2000), we use the min/max test statistics. Harvey and Liu (2014b) look
further into the choice of the test statistics.

• Can we “test down” for variable selection instead of “testing up” ? (Section 2)

Our method does not apply to the “test down” approach. To see why this
is the case, imagine that we have 30 candidate variables. Based on our method,
each time we single out one variable and measure how much it adds to the
explanatory power of the other 29 variables. We do this 30 times. However,
there is no baseline model across the 30 tests. Each model has a different null
hypothesis and we do not have an overall null.

Besides this technical difficulty, we think that “testing up” makes more sense for
finance applications. For finance problems, as a prior, we usually do not believe
that there should exist hundreds of variables explaining a certain phenomenon.
“Testing up” is more consistent with this prior.
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