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Abstract

In this paper, we develop a model in which risk-averse investors trade on private

information regarding both a stock’s expected payoff and risk. These investors may

trade in the stock and a derivative whose payoff is a function of the stock’s risk. We

study the role played by the derivative, finding that it is used to speculate on future

risk and to hedge risk uncertainty. Unlike prior rational expectation models with

derivatives, its price serves a valuable informational role, communicating investors’

risk information. Finally, we find that the equity risk premium is directly tied to the

derivative price.
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1 Introduction

Trade in derivatives whose values depend upon their underlying’s risk, such as variance

swaps, is on the rise. Investors appear to trade in these derivatives to speculate on private

information regarding their underlying’s volatility, and, as a result, their prices play a valu-

able informational role in the economy, communicating investors’ information about risk.

For example, ETFs tracking the VIX are now among the most actively traded securities

in the market; trading volume in these ETFs is converging to that in the underlying S&P

index itself. Furthermore, the price of the VIX has been termed the economy’s “fear gauge,”

serving as a measure of the market’s beliefs regarding macroeconomic risk.1 Yet, trade in

and pricing of these securities are diffi cult to explain using traditional models of trade based

on private information (e.g., Grossman and Stiglitz (1980)), which assume that investors are

perfectly aware of securities’risk. As a result, these models find that derivatives play only a

risk-sharing role and that their equilibrium prices do not provide investors with information

(Brennan and Cao (1996), Vanden (2006)). In this paper, we demonstrate the more active

role played by derivative securities in a model in which risk-averse investors trade on private

information on both the expected payoff and the risk of a stock.

In our model, investors face uncertainty regarding both the mean and variance of an eq-

uity’s payoffs and possess diverse private information on each of these components, i.e., they

each possess both “mean”and “risk” information. In particular, the “mean” information

received by investors informs them regarding the first moment, or location parameter, of

the equity’s payoffs, while their “risk”information informs them regarding the second mo-

ment, or dispersion parameter, of the equity’s payoffs. In addition to trading in the equity,

investors may trade in a security whose payoff is exclusively a function of the riskiness of

1Support for these statements is found throughout the financial press. For example, see The Fearless
Market Ignores Perils Ahead (April 2017, Financial Times), which discusses cases in which the VIX has
been used to speculate on future risk and discusses the recent uptick in trade in the VIX. See also The
Snowballing Power of the VIX, Wall Street’s Fear Index (June 2017, Wall Street Journal), which states,
“Invented 24 years ago as a way to warn investors of an imminent crash, the VIX has morphed into a giant
casino of its own.”Finally, note that VIX open interest reached an all-time peak of close to 700,000 contracts
in February 2017. See https://ycharts.com/indicators/cboe_vix_futures_open_interest.
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the equity, which we refer to as a variance derivative. This security is meant to capture

trade in derivatives such as variance swaps whose value increases in volatility.2 Our goal is

to examine how investors trade on their two types of information in equilibrium and the role

played by price of the variance derivative.

To begin, we study where investors trade on mean and risk information when they have

access to both securities. We find that uncertainty over the equity’s risk affects how investors

trade on their information regarding expected payoffs. Prior models of trade with known

equity risk demonstrate that investors trade on their beliefs about a stock’s expected payoffs

in equities but not derivatives (Brennan and Cao (1996), Cao and Ou-Yang (2009)). On

the other hand, in the face of risk uncertainty, the variance derivative serves as a form of

insurance against fluctuations in the riskiness of the stock’s payoffs. When the riskiness of

the stock’s payoffs is high, a risk-averse investor who holds an equity position has heightened

marginal utility with respect to their wealth.3 Therefore, they have a desire to “hedge”

by purchasing a security that pays off when equity risk is high; the variance derivative

fills precisely this role. As a result, investors with optimistic mean information purchase

the equity and hedge their positions by holding the variance derivative. Empirically, such

hedging resembles the common practice of using derivatives as portfolio insurance, that is,

taking positions in derivatives such as the VIX to protect against large losses.4

Next, we study the information provided by the prices of the equity and derivative secu-

rities in equilibrium. The model demonstrates that there is an additional driver of trade in

the variance derivative that is not associated with trade in the equity market: trade on risk

information. One might expect that a risk-averse investor with private information that sug-

gests an equity is risky would downsize their position in this equity. However, in our model,

2As we discuss further in the text, the derivative may also be viewed as a heurtistic approximation to a
zero-delta option position such as a straddle.

3More specifically, prudent preferences, i.e., those characterized by a utility function with a positive third
derivative, exhibit this characteristic.

4Evidence from The Economist Intelligence Unit, 2012 suggests that 39% of institutional investors utilize
portfolio hedging strategies. Also, see The Snowballing Power of the VIX, Wall Street’s Fear Index (June
2017, Wall Street Journal) for evidence that the VIX is used as a hedging device, which states, “‘Tail risk’
strategies, designed to steer clear of sudden slumps, often rely on it [the VIX].”
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this is not the case: instead, they hold their equity position fixed and purchase the variance

derivative. Intuitively, when the investor trades on risk information in the derivative, the

only risk they face is that their information signal regarding the equity’s risk is inaccurate.

If the investor were to trade on risk information in the equity itself, they would face both

the risk that their information is inaccurate and the risk that the equity price moves against

them. In sum, there are two components to the investor’s demand in the variance derivative:

a risk-uncertainty hedging component and a speculative risk-information component. Thus,

unlike prior rational expectations models with known risk, our model suggests the derivative

price serves a valuable informational role, enabling investors to learn about the underlying’s

risk. This suggests, for instance, that by serving as the economy’s “fear gauge,”the price of

the VIX may in fact guide investors’trading decisions.5

Finally, we study how the price of the variance derivative is related to the equity price

and trading volume in the two markets. The model suggests that the price of the variance

derivative directly enters the risk premium in the equity market. Intuitively, the price of

this derivative reflects the cost to hedging the risk uncertainty induced by a position in the

equity. Therefore, when the derivative price is higher, investors are more reluctant to hold

the equity, such that its risk premium rises. Moreover, a higher derivative price also leads

to a reduction in trade in the equity and derivative markets. The reason is that investors

become less willing to speculate on their information regarding expected payoffs when it is

more costly to hedge the risk uncertainty that results from an equity position.

By analyzing the relationship between risk uncertainty and trade in equities and deriva-

tives in a unified, information-based framework, our model offers insight into several empirical

findings. First, trading volume in individual equity options tends to predict future equity

returns (Easley, O’Hara, and Srinivas (1998), Pan and Poteshman (2006)) and trading vol-

ume in options relative to trading volume in their underlying equities varies cross-sectionally

5Beyond the VIX, individual equity options also appear to aggregate investors’private information re-
garding risk; see Mayhew and Stivers (2003), Poon and Granger (2005), Ni, Pan, and Poteshman (2008),
and Fahlenbrach and Sandås (2010).
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in features such as institutional ownership and liquidity (Roll, Schwartz, and Subramanyam

(2010), Ge, Lin and Pearson (2016)). Our model suggests that these correlations might in

part be explained by novel risk information received by investors. Specifically, we predict

that trading volume in equities is associated with higher contemporaneous equity returns and

lower contemporaneous derivative returns. Intuitively, increases in investors’perceptions of

the equity’s risk lead not only to a larger equity risk premium, but also to a reduction in

investors’willingness to trade on their information. Furthermore, our theory offers novel pre-

dictions on the relationship between trade in derivative securities and the prices of equities

and derivatives, suggesting that investors trade more in a derivative when its underlying’s

price is high and its own price is low.

Second, our model offers insight into the empirical relationship between disagreement

and security returns, for which evidence is mixed (Diether, Malloy, and Scherbina (2002),

Johnson (2004) and Goetzmann and Massa (2005), Carlin, Longstaff, and Matoba (2014)).

Unlike prior rational expectations models that suggest disagreement amongst investors is not

priced (Banerjee (2011), Lambert, Leuz, and Verrecchia (2012)),6 our model predicts that

disagreement regarding the security’s expected payoffs reduces its equity price and increases

derivative prices. The intuition is as follows. Investors’desires to hedge their equity positions

in the derivative rise in the magnitude of their equity positions: both investors who are short

and investors who are long the equity are exposed to variance risk and wish to utilize the

derivative to hedge this risk. Since belief dispersion creates variation in investors’equity

positions, this causes an increase in the demand for, and thus the price of, the derivative.

Again, as the derivative price is directly related to the risk premium in the equity market,

this increase in the derivative price leads to a decrease in the equity price.

6The analysis in Banerjee (2011) states that belief dispersion will increase expected returns in a noisy
rational expectations setting. Note, however, that this is only the case when belief dispersion is created
through a change in the precision of investors’ information (see Proposition 1 of his paper). That is, the
analysis he considers is not a ceteris paribus modification of belief dispersion, but rather, a change in the
underlying information structure that creates belief dispersion. In his model, a ceteris paribus modification
of belief dispersion would have no impact on prices: he states, "investor disagreement does not affect prices
(while the average beliefs do) (pg. 38)."

5



Finally, variance swaps (and other securities whose payoffs increase in systematic volatil-

ity, including options) are priced at a premium, termed the variance risk premium (VRP)

(e.g., Carr and Wu (2009)). In our model, a VRP may arise due to investors’desire to hedge

risk uncertainty in the derivative market. In line with empirical evidence that demonstrates

the size of the VRP predicts future equity returns (Bollerslev, Tauchen, and Zhou (2009)),

our model predicts a deterministic relation between the VRP and future equity returns, as

the cost to hedging the risk uncertainty induced by an equity position rises in the VRP.

Moreover, we predict that dispersion in investors’ equilibrium beliefs regarding expected

future cash flows increases the VRP. Finally, we predict that the variance risk premium is

negatively correlated with trading volume in the stock and derivative markets.

Related Literature. Prior rational expectations models have studied trade in options

(Brennan and Cao (1996), Cao (1999), Vanden (2006)). In these models, options complete

the market when investors have heterogenous information quality. However, investors take

deterministic positions in options based on the precision of their information relative to the

average precision of all investors and derivative prices provide no information to investors.

There are two key differences between these papers and ours: first, these models focus

on the case in which the riskiness of the securities’cash flows is known and the information

possessed by investors orders their posteriors in the sense of first-order stochastic dominance.7

Second, while these papers study options, which are affected by both the expected payoff

to the underlying and its risk, the derivative in our model pays off purely as a function of

risk.8 Relatedly, Chabakauri, Yuan, and Zachariadis (2016) study a rational expectations

model in which investors may trade in a full set of contingent claims, again finding that

derivative securities are informationally irrelevant due to the assumptions placed on the

type of information possessed by investors.

7While some prior literature has examined rational expectations models with non-normal distributions,
and hence, signals that lead to updating on moments other than the first, even in these frameworks, signals
order the posterior distributions in the sense of first-order stochastic dominance (e.g., Breon-Drish (2015a),
Vanden (2008)).

8Nevertheless, note that in these prior models, investors use options to create a quadratic position in the
underlying equity payoff. Thus, options are effectively used to create a payoff that increases in risk.
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Another set of models has studied trade in options when investors disagree over the mean

and/or variance of future cash flows (but face no uncertainty over the variance) (Detemple

and Selden (1991), Buraschi and Jiltsov (2006), Cao and Ou-Yang (2009), Oehmke and

Zawadowski (2015)). Most similar to our model, Cao and Ou-Yang (2009) study a setting

in which investors agree to disagree about the mean and precision of a signal and may trade

in a stock or options. They find that disagreements about the mean lead to stock but not

option trade and disagreements over precision lead to trade in both markets, the inverse of

our finding. This difference may be explained by the fact that in their model, the variance of

cash flows is known and information is symmetric. This eliminates updating from derivative

prices and the hedging component of investors’derivative demands, such that derivatives

serve a different purpose.

Prior literature has examined private-information based trade in options in strategic risk-

neutral settings (Back (1993), Biais and Hillion (1994), Cherian and Jarrow (1998), Easley,

O’Hara, and Srinivas (1998), Nandi (2000)). Most similar to our paper, Cherian and Jarrow

(1998) and Nandi (2000) study models of strategic trade in which an investor possesses risk

information and trades in options. Note that because strategic investors are risk neutral in

these models, uncertainty over risk has no impact on the equity price and affects options only

through its impact on their expected payoffs. Consequently, these models have no role for

the derivative as a hedging instrument and, unlike our model, find no relationship between

the equity and derivative prices.

Other models offer non-information related reasons for why investors trade derivatives.

For example, Leland (1980) demonstrates that derivative demand may arise from the re-

lationship between investors’ risk aversion and their wealth, and Franke, Stapleton, and

Subrahmanyam (1998) demonstrate that derivative demand may result from unhedgable

background risks. As we abstract from these forces, it is important that these other forces

be taken into consideration in testing our model. Finally, our model is related to the ratio-

nal expectations literature that studies information spillovers when investors face uncertainty
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about multiple components of a securities’risk and may trade in correlated securities (Gold-

stein, Li, and Yang (2014), Goldstein and Yang (2015)). We contribute to this literature by

considering the case in which one component of a securities’risk is related to its variance.

2 Baseline Model

2.1 Assumptions

The model that we analyze is a one-period model of trade, in the spirit of Hellwig (1980)

and Breon-Drish (2015a). As is typical, we assume that the economy is populated by a

unit continuum of informed investors indexed on [0, 1] with CARA utility u (W ) = −e−Wτ

and with wealth normalized to zero. Investors have access to a risk-free asset with payoff

normalized to one that is in unlimited supply. Furthermore, they trade in a risky asset (the

stock, or equity) that pays off a one-time dividend of x̃ at the end of the period, with per-

capita supply of z̄. We refer to the ith trader’s position in the stock as DSi. There are three

novel assumptions in the model. First, both the mean and variance of the stock’s payoffs

are unknown to investors: given the realizations of two independent random variables, µ̃

and Ṽ , x̃ is normally distributed with mean µ̃ and variance Ṽ : x̃|µ̃, Ṽ ∼ N
(
µ̃, Ṽ

)
. It is

natural to assume that the mean parameter is also Gaussian: µ̃ ∼ N
(
m,σ2

µ

)
. However, as

Ṽ must be non-negative, it cannot be Gaussian; we allow Ṽ to take any distribution with a

non-negative support Υ ⊆ <+.

The second novel assumption of the model is that investors separately possess both

“mean” information and “risk” information. Clearly, private information regarding µ̃ con-

cerns the stock’s expected payoff, while private information regarding Ṽ concerns the stock’s

risk. All informed traders receive information signals regarding µ̃ and Ṽ and traders ratio-

nally use the stock and derivative prices as additional signals.9 The “mean”signal received

9The model is easily extended to the case in which some traders do not receive a variance signal. However,
as we discuss later, all traders must have homogenous information precision regarding µ̃ to ensure tractability.
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by investor i equals ϕ̃i = µ̃ + ñ + ε̃i where ñ ∼ N (0, σ2
n) and ε̃i ∼ N (0, σ2

ε). The “risk”

signal received by investor i equals η̃i = Ṽ + υ̃+ ẽi where υ̃ ∼ N (0, σ2
υ) and ẽi ∼ N (0, σ2

e).
10

The noise terms ñ, υ̃, ε̃i, and ẽi are independent of the other variables in the model. Note

that in the standard normal prior, normal likelihood set up found throughout the rational

expectations literature, the variance of cash flows falls by a deterministic quantity that de-

pends upon investors’ information quality. By allowing investors to receive a signal that

directly concerns the variance of cash flows, in our model, investors’posterior variance is

now a random function that depends on the realized signal η̃i.

The final novel assumption is that investors also trade a third security that has payoffs

equal to the stochastic variance, Ṽ ,11 with per-capita supply of zero. It is natural that in the

presence of an additional source of risk in the stock’s payoffs and heterogenous information

regarding this risk, a market would develop to trade the risk. We refer to this security as

a variance derivative and refer to the ith trader’s position in the derivative as DDi. The

increase in market completeness obtained by the introduction of this security allows for

the construction of a closed-form equilibrium stock price and investor demands conditional

on PD, which enables the study of several applications. In its absence, investors’demand

functions can only be characterized implicitly. Moreover, in the absence of the variance

derivative, investors would bet on both mean and risk in a single security, the stock, causing

its price to reflect two distinct pieces of information; this would lead to a complex statistical

updating problem.

Our approach to modeling the derivative deviates from prior literature, which studies

derivatives with option-like payoffs, or payoffs that are a quadratic or logarithmic function

of returns (Brennan and Cao (1996), Vanden (2006), Cao and Ou-Yang (2009)). In contrast,

10Note that while signals regarding Ṽ may be negative, which may seem to contradict the fact that
variances are non-negative, a signal η̃i is informationally equivalent to any signal g (η̃i) where g is invertible.
Hence, we could define instead define the signal as η̃′i = eη̃i to obtain a signal which always takes on
non-negative values.
11It is simple to accomodate the case in which ỹ also pays out the fixed component of the unconditional

variance of x̃, σ2µ, but this adds complexity to the expressions for price and demand while offering no
additional insight.
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we assume that the derivative security’s pay off equals the structural variance that generates

the stock’s payoffs. This raises the question of what such a security represents. We offer two

interpretations. Most clearly, the variance derivative may be seen as a variance swap (e.g.,

VIX), i.e., a security that pays off proportional to the realized variance of its underlying’s

returns, defined as the sum-of-squared daily returns. Intuitively, if investors periodically

receive noisy information regarding future cash flows, a higher underlying cash flow risk

should manifest as variance in returns. To see this in a simple framework, consider an

extension of the model in which the security’s dividend is equal to the sum of N i.i.d.

components, x̃ = x̃ 1
N

+ x̃ 2
N

+ ...+ x̃1, where x̃ i
N
∼ N

(
0, Ṽ

N

)
for all i ∈ {1, ..., N}.12 Moreover,

suppose that after the trading period studied in our model, there are N periods; in period N ,

investors learn x̃ i
N
. This set up is intended to capture the notion that investors periodically

learn new, albeit imperfect, information regarding the terminal cash flow x̃. Finally, suppose

that price in each period is a linear function of investors’expectations regarding x̃, and let

the sum-of-squared returns, SSR, equal SSR =
∑N

i=1

(
P i
N
− P i−1

N

)2

where P i
N
is the price

of the security in the N th period. Then, we have that:

SSR ∝
N∑
i=1

x̃2
i
N
. (1)

Taking the limit as N approaches infinity, such that investors continuously receive very small

amounts of information regarding the terminal dividend, this converges to Ṽ , i.e., the payoff

to a variance swap as of the initial trading date, SSR, is precisely proportional to Ṽ .

Second, the variance derivative may be viewed as a heuristic approximation to a “zero-

delta” option position such as a straddle, i.e., an option position that is affected by the

magnitude but not direction of the price movement. Despite the fact that their payoffs are

defined as a function of realized price, the expected payoffs to positions such as straddles

and strangles increase in the riskiness of the stock’s payoffs, Ṽ . Hence, by modelling the

derivative’s payoff as simply equal to Ṽ , we capture the essential element that the expected

12Notice that for simplicity of exposition, the mean of x̃ has been set to a known constant of zero.
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payout to the derivative is greater when the variance of the stock’s payoffs is larger. Ni et al.

(2008) offer an empirical measure that corresponds to this interpretation of the derivative,

measuring volatility-based trade in option positions by controlling for their sensitivity to

directional price movements in their underlyings.13

In order to close the model and prevent the stock price from fully revealing investors’

information, we introduce noise into the model by assuming that the investors have exogenous

endowments of the two stochastic components relevant to the asset, µ̃ and Ṽ . This is a

natural extension of the assumption made in prior work such as Wang (1994) and Schneider

(2009) to the case in which there are two traded assets with two independent sources of

risk. Formally, assume that the endowment of trader i in µ̃ is equal to Z̃µi = z̃µ + z̃µi where

z̃µ ∼ N
(

0, σ2
zµ

)
and z̃µi ∼ N

(
0, σ2

zµi

)
and assume that the endowment of trader i in Ṽ is

Z̃V i = z̃V + z̃V i where z̃V ∼ N
(
0, σ2

zV

)
ad z̃V i ∼ N

(
0, σ2

zV i

)
. Assume that the endowments

{z̃µ, z̃V , z̃µi, z̃V i} are independent of each other and the other variables in the model.

2.2 Equilibrium

We begin by characterizing a rational expectations equilibrium. Denote by PS the equi-

librium price of the stock and by PD equal the equilibrium price of the derivative. Let

Φi =
{
ϕ̃i, η̃i, Z̃µi, Z̃V i, PS, PD

}
represent investor i’s information set. We analyze the stan-

dard definition of a rational expectations equilibrium:

Definition 1 A rational expectations equilibrium is a pair of functions PS, PD such that

investors choose their demands to maximize their utility conditional on their information

13We note that the model accomodates the case in which the derivative has both “delta” and “vega.”
First, note that a security with both delta and vega can be roughly approximated by taking a position in
both the equity and derivative in my model. Second, suppose that the derivative payoff was instead linear
in x̃ as well as Ṽ , i.e., its pay off was αx̃+βṼ for some α ∈ < and β > 0. In this case, the expression for the
equity price would be materially unchanged as a result of the fact that the derivative is, on average, in zero
net supply. However, trading volume in the asset would be a function of investors’risk information, as they
would trade in the asset to neutralize the delta provided by a position in the derivative. The derivative price
would equal αPS + βPD where PS and PD are the equity and derivative prices in our model, respectively.
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set:

DSi (Φi) , DDi (Φi) (2)

∈ arg max
dSi,dDi∈R

E
[
− exp

(
−τ−1

(
dSi (x̃− PS) + dDi

(
Ṽ − PD

)
+ Z̃µiµ̃+ Z̃V iṼ

))
|Φi

]

and, in all states, markets clear:

∫ 1

0

DSi (Φi) di = z̄ (3)∫ 1

0

DDi (Φi) di = 0.

To derive the equilibrium, we proceed in three steps: (i) we solve for equity demands

and the equity price for a fixed derivative price; (ii) we solve for the derivative demands and

derivative price for fixed equity demands; (iii) we combine the two markets to show that

there exists a rational expectations equilibrium, which solves a fixed point problem.

Note that given the equilibrium definition, the investors’demands in the stock and deriv-

ative are allowed to depend on both the derivative price and the stock price. As a result, it

is possible that the stock and derivative prices each contain information on both µ̃ and Ṽ .

We specialize slightly further in the equilibria we consider. In particular, we consider only

equilibria in which the derivative price does not reveal any information incremental to the

stock price regarding µ̃ and the stock price does not reveal any information incremental to

the derivative price regarding Ṽ . Technically, we take the following approach. Let FPS (·)

represent the distribution function of PS and FPD (·) represent the distribution function of

PD. We conjecture an equilibrium in which the derivative price is conditionally independent

of µ̃ given the stock price, i.e., FPD (·|PS, µ̃) = FPD (·|PS) and the stock price is condition-

ally independent of Ṽ given the derivative price, i.e., FPS
(
·|PD, Ṽ

)
= FPS (·|PD). This

implies that investors use the stock price to update on expected payoffs and the derivative

price to update on the riskiness of payoffs. We then show that given such a conjecture, the
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equilibrium stock price and derivative price indeed satisfy FPD (·|PS, µ̃) = FPD (·|PS) and

FPS

(
·|PD, Ṽ

)
= FPS (·|PD), demonstrating the existence of such an equilibrium. In fact,

one needs only to conjecture that one of these two properties holds, and the other will follow

in equilibrium. However, we have not been able to rule out the possibility of other equilibria.

Beginning with the stock market, we follow the standard procedure of conjecturing a

linear equilibrium,

PS = α̃0 + αµ (µ̃+ ñ) + αz z̃µ, (4)

where, by the conjecture that FPS
(
·|PD, Ṽ

)
= FPS (·|PD), α̃0 may depend upon Ṽ only

through PD, and hence is known to investors. The following proposition summarizes the

equilibrium equity demands and equity price for a given derivative price PD. In the appendix,

we derive expressions for α0, αµ, and αz.

Proposition 1 The investors’equity demands and the equilibrium equity price given a deriv-

ative price PD satisfy:

DSi = τ
E (x̃|Φi)− PS
PD + V ar (µ̃|Φi)

− V ar (µ̃|Φi) Z̃µi
PD + V ar (µ̃|Φi)

and (5)

PS =

∫ 1

0

E (x̃|Φi) di−
1

τ
z̃µV ar (µ̃|Φi)−

1

τ
z̄ (PD + V ar (µ̃|Φi)) .

To understand the expression for investors’demands, note that in the classical mean-

variance framework with known variance and no derivative security, their demands would

equal their expected payoffless price divided by the variance, less their endowment: τ E(x̃|Φi)−PS
V ar(x̃|Φi) −

Z̃µi. In the present setting, we again have a numerator equal to the expected payoff minus

price and the investors’demands are adjusted for their endowment of µ̃. However, the de-

nominator, which captures the investor’s adjustment for risk, is now modified as there are

two components of risk when trading in the stock: that of the uncertain mean, µ̃, and the

stochastic variance, Ṽ . As is the case in the classical framework, the variance of the uncer-

tain mean component is added to the denominator since it follows a normal distribution.
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On the other hand, to account for the riskiness of the stochastic variance Ṽ , the denomina-

tor includes the price of the derivative security PD, which in general is not simply equal to

expected risk E
(
Ṽ
)
.

To provide an intuition for why investors discount the risk associated with Ṽ at the price

of the derivative security, consider investor i’s expected utility conditional on Ṽ when their

demands are (DSi, DDi) and their outside endowments are zero:

E
{
− exp

[
−τ−1

(
DSi (x̃− PS) +DDi

(
Ṽ − PD

))]
|Φi, Ṽ

}
(6)

= − exp

{
−τ−1

[
DSi (E (µ̃|Φi)− PS) +DDi

(
Ṽ − PD

)
− τ−1D

2
Si

2

(
V ar (µ̃|Φi) + Ṽ

)]}
.

Notice that the investor’s expected utility is decreasing in a linear combination of the payoff

to their derivative position, DDi

(
Ṽ − PD

)
, and the riskiness of the equity position, D2

SiṼ .

As a result, the exposure to Ṽ created by a position in the stock, τ−1D2
SiṼ can effectively

be hedged by taking a position in the derivative, which comes at the price of PD. When PD

rises, this exposure becomes costlier to hedge, and hence, investors will treat the stock as

though it were riskier. The proof provided in the appendix demonstrates that this intuition

continues to hold upon taking the expectation over Ṽ and upon accounting for investors’

random endowments.

Importantly, the equity demands DSi are not directly a function of investors’risk signals

η̃i, given the conjecture that FPD (·|PS, µ̃) = FPD (·|PS). Thus, despite the fact that investors’

risk signals provide them with information regarding the riskiness of the stock, they choose

not to take into account these signals η̃i when trading in the stock market. As a result, the

conjecture that the stock price is informationally redundant with respect to Ṽ is verified.

Note that the following corollary does not imply that the stock market and derivative markets

function independently. Instead, the corollary only states that investors’risk information

can only affect the equity price through the price of the derivative, PD.

Corollary 1 The stock price is informationally redundant with respect to Ṽ . That is,
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FPS

(
·|PD, Ṽ

)
= FPS (·|PD).

With the equilibrium in the stock market established, now consider the equilibrium deriv-

ative price for fixed equity demands, {DSi}i∈[0,1]. As the distribution of a variance must be

bounded below by zero, the distribution of the payoff of the derivative cannot be assumed

normal. To make the model as general as possible, we allow for an arbitrary distribution of

Ṽ . In order to derive the rational expectations equilibrium in this general case, we apply

the approach of Breon-Drish (2015b), summarized below.

First, conjecture a generalized linear equilibrium, i.e., one in which price is a monotonic

transformation of a linear function of investors’aggregate information signal Ṽ + υ̃ and their

aggregate endowment z̃V . That is, start by conjecturing PD = δ
(
l
(
Ṽ + υ̃, z̃V

))
where

l
(
Ṽ + υ̃, z̃V

)
= a

(
Ṽ + υ̃

)
+ z̃V for some a ∈ < to be determined as part of the equilibrium

and a strictly increasing function δ. Given this conjecture, investors are able to invert

l
(
Ṽ + υ̃, z̃V

)
from the derivative price. Due to the fact that the additive error terms in η̃i

and l̃ are normally distributed, η̃i, l̃, and Z̃V i are normally distributed conditional on Ṽ .

This implies that the distribution of Ṽ given
(
η̃i, l̃, Z̃V i

)
falls into the exponential family of

distributions with the following form:

dFṼ |η̃i,l̃ = exp
[(
k1 (a) η̃i + k2 (a) l̃ + k3 (a) Z̃V i

)
Ṽ (7)

−g
(
k1 (a) η̃i + k2 (a) l̃ + k3 (a) Z̃V i

)]
dH
(
Ṽ ; a

)

for some functions k1 (a), k2 (a), k3 (a), g (·), and H
(
Ṽ ; a

)
. When investors have CARA

utility and the distribution of payoffs takes this form, their demands are additively separable

in their private signal η̃i, the price signal l̃, their endowment Z̃V i, and a monotonic function

of PD. By examining the market-clearing condition, it can be seen that PD indeed takes the

generalized linear form, δ
(
l
(
Ṽ + υ̃, z̃V

))
. The next proposition summarizes these results.

Proposition 2 Suppose that investor i demands DSi units of the stock. Then, investor i’s
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derivative demand equals:

DDi = k1 (a∗) η̃i + k2 (a∗) l̃ + k3 (a∗) Z̃V i − g′−1 (PD) +
1

2τ
D2
Si, (8)

where k1 (·), k2 (·), k3 (·), g (·), and a∗ are defined in the appendix. The equilibrium derivative

price PD may be written:

PD = g′
[
r (a∗)

(
a∗
(
Ṽ + υ̃

)
+ z̃V

)
+

1

2τ

∫ 1

0

D2
Sidi

]
. (9)

for a function r (·) defined in the appendix. PD is positive, increasing in Ṽ and υ̃, and

decreasing in z̃V .

Critically, investors’derivative demands contain a new component that reveals an impor-

tant interaction between the two markets. In particular, investor i’s demand is increasing

in the square of their position in the stock, 1
2τ
D2
Si. This arises from the investors’desire to

hedge risk uncertainty: since the investors’utility functions have a positive third derivative,

they prefer skewed payoff distributions (Kimball (1990)). By purchasing the derivative, an

equity investor has a greater level of wealth when they face more risk, leading to payoff

skewness.14 Note that this hedging component of investors’derivative demands lead both

investors who short the stock and investors who long the stock hold positions in the deriva-

tive. Moreover, it creates a link between the derivative price and investors’equity demands

through the aggregate desire to hedge,
∫ 1

0
D2
Sidi.

Although investors’equity demands affect the derivative price and these demands are

affected by their private information and endowments, ϕ̃i and Z̃µi, the derivative price is

nevertheless informationally redundant with respect to µ̃. Substituting the equity price in

Proposition 1 into investors’equity demands, we find that their equity demands are linear

14See footnote 18 in Eeckhoudt and Schlesinger (2006) for a discussion of why this holds even for CARA
utility, which is generally interpreted as having a preference for risk that is independent of wealth. The
notion of preferences across distributions is distinct from the Arrow-Pratt measure of risk aversion, which
assesses how much an investor is willing to pay to eliminate a risk at any given wealth level. The Arrow-Pratt
measure also takes into account an investor’s marginal utility at a given wealth level.
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in the difference between their private mean signal (ϕ̃i) and the average mean signal (µ̃) and

in their mean-zero idiosyncratic endowments z̃µi. As a result, the aggregate risk-uncertainty

hedging demand of informed investors for the derivative,
∫ 1

0
D2
Sidi, is a function only of µ̃

only through the term
∫ 1

0
(ϕ̃i − µ̃)2 di and a function of Z̃µi only through

∫ 1

0
z̃2
µidi. It is easily

checked that
∫ 1

0
(ϕ̃i − µ̃)2 di and

∫ 1

0
z̃2
µidi depend upon investors’ information quality and

endowment noise but not on µ̃ or z̃µi themselves. In sum, we have the following result:

Corollary 2 The derivative price is informationally redundant with respect to µ̃. That is,

FPD (·|PS, µ̃) = FPD (·|PS).

This result also demonstrates that the derivative price would perfectly reveal investors’

aggregate risk signal,
∫ 1

0
ϕ̃idi = Ṽ + υ̃, in the absence of noise in investors’ endowments

of Ṽ . One might posit that investors’ risk-uncertainty hedging demands would serve as

a form of noise trade in the derivative markets, obviating the need to directly introduce

additional noise into the derivative market. However, this is not the case, as investors’

aggregate hedging demands are unaffected by µ̃ and z̃µ. Specifically, notice that expres-

sion (9) demonstrates that in the absence of endowment noise, z̃µ, we would have PD =

g′
[
r (a∗) a∗

(
Ṽ + υ̃

)
+ 1

2τ

∫ 1

0
D2
Sidi

]
. As

∫ 1

0
D2
Sidi is independent of µ̃ and z̃µ, this implies

that the derivative price could be inverted to derive Ṽ + υ̃.

Now that the two markets have been examined in isolation, taking the price and demands

in the other market as fixed, we consider both markets in tandem and show that there exists

an equilibrium.

Proposition 3 There exists a rational expectations equilibrium PS, PD.

The existence of an equilibrium boils down to the existence of a solution to a fixed-point

problem; the nature of this problem is depicted in Figure 1. Expression (5) shows that the

aggregate risk-uncertainty hedging demand of investors,
∫ 1

0
D2
Sidi, is a decreasing function

of the derivative price, PD. Intuitively, when PD is larger, investors are more reluctant to
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Figure 1: This figure depicts the interplay between the equity and the variance derivative
markets, given that the derivative insures against fluctuations in Ṽ induced by a position
in the equity. Trade in the equity affects the derivative price through investors’desire to
hedge risk uncertainty. This in turn, affects the equity market through the risk premium
associated with Ṽ .

trade on their information because it is costlier to hedge the risk uncertainty that results

from a directional equity position. In other words, when PD is higher, the investor is more

averse to the variance risk induced by an equity position; we thus refer to this effect in the

figure as the variance risk premium (note we discuss the variance risk premium further in

section 2.5). Simultaneously, the derivative price is itself a function of
∫ 1

0
D2
Sidi, such that

finding an equilibrium requires solving for a fixed point PD. Note that as in Wang (1994)

and Schneider (2008), the assumption that noise in the model stems from noisy endowments

rather than noise trade works against equilibrium uniqueness; that is, the possibility of

multiple equilibria stems purely from the standard assumptions on endowment noise, rather

than risk uncertainty, the inclusion of a variance derivative, or risk information.15

Note that in our model, investors face two components of risk in a single security, the

equity. It is insightful to compare our model to prior rational expectations models with

multidimensional risk. Goldstein, Li, and Yang (2014) study a model in which investors

trade in two related securities with a common component affecting the expected returns to

both securities. Goldstein and Yang (2015) study a model in which investors have information

on two components of a security’s cash flow. These papers demonstrate that uncertainty and

15We have solved the model under the assumption of fixed endowments and noise trade and found a unique
equilibrium. However, the required assumptions on the behavior of noise traders to ensure the existence of
a tractable equilibrium are ad hoc.
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learning regarding one factor tends have spillover effects on the other factor.

Unlike these papers, the two components of uncertainty in our model affect different

moments of the cash flow distribution. This creates new economic forces that do not appear

in the set up in which each component affects expected payoffs: the realization of investors’

information regarding risk affects both the risk premium and investors’trading intensities in

the second security. Thus, while Goldstein, Li, and Yang (2014) document that uncertainty

regarding one component of cash flows has spillover effects on investors’trading intensities

in both markets, our model suggests that the price of the variance derivative itself affects

how intensely investors trade on their information and causes the derivative price to enter

the equity’s risk premium (i.e., cost of capital). These forces are crucial to the applications

studied below, leading to relationships between price changes and trading volume in both

markets.

2.3 Trading volume and price changes

In this section, we analyze the relationships between trading volume and price changes within

and across equity and derivative markets. To summarize the results, note that Propositions

1 and 2 reveal three key relationships: i) the risk premium in the equity market increases in

the derivative price, ii) investors’willingness to trade on their mean-based information in the

equity decreases in the derivative price, and iii) when investors trade more in the equity, they

also trade more in the derivative to hedge risk uncertainty. Analyzing these effects jointly,

increases in the derivative price and reductions in the equity price are negatively associated

with trading volume in the equity and derivative.

Critically, these results are founded on 1) investor risk aversion and 2) a derivative security

that pays off purely as a function of its underlyings’volatility. Therefore, they apply most

directly to trade in the VIX (and similar securities), which possesses risk that is primarily

systematic in nature and pays off purely as a function of realized volatility. However, note

that our results also provide insight into option trade that is driven by a demand for exposure

19



to volatility; again this has been measured by controlling for option “delta”(Ni et al. (2008)).

An empirical literature has studied trade in options versus stocks, arguing that the relative

trading volume in each security tends to be driven by concerns for leverage and liquidity

(e.g., Easley et al. (1998), Pan and Poteshman (2006), Ni et al. (2008), Fahlenbrach and

Sandås (2010), Roll et al. (2010), and Johnson and So (2012)). Our model suggests that

the correlations discovered in these papers might in part reflect innovations to risk and risk

information, which jointly impact trading volume and prices.

We begin by characterizing trading volume in the two markets. Formally, we define trad-

ing volume in the stock and derivative as the total differences between investors’equilibrium

demands and the average endowments. That is, let trading volume (double counted) in

the stock equal V olS ≡
∫ 1

0

∣∣∣DSi −
∫ 1

0
DSidi

∣∣∣ di and trading volume in the derivative equal
V olD ≡

∫ 1

0

∣∣∣DDi −
∫ 1

0
DDidi

∣∣∣ di. The next proposition formally characterizes volume in the
two markets.

Proposition 4 Trading volume in the stock market is equal to:

V olS = τ

∫ 1

0

∣∣∣∣∣E (x̃|Φi)−
∫ 1

0
E (x̃|Φi) di− τ−1V ar (µ̃|Φi) z̃µi

PD + V ar (µ̃|Φi)

∣∣∣∣∣ di (10)

and trading volume in the derivative market is equal to:

V olD =

∫ 1

0

∣∣∣∣τk1 (a∗) ẽi +
1

2τ

(
D2
Si −

∫ 1

0

D2
Sidi

)
+ (τk3 (a∗)− 1) z̃V i

∣∣∣∣ di. (11)

Volume in the stock market has two components, a component related to speculation on

investors’beliefs regarding µ̃,
∫ 1

0

∣∣∣E (µ̃|Φi)−
∫ 1

0
E (µ̃|Φi) di

∣∣∣ di, and a risk-sharing component,
τ−1V ar (µ̃|Φi) z̃µi. Importantly, note that investors’willingness to trade on their information

is disciplined by their assessment of the riskiness of the stock’s payoffs, as measured by

PD + V ar (µ̃|Φi). This reveals an interaction between the stock and derivative markets: any

force that raises the derivative price also leads to a reduction in trade in the stock market.

For instance, innovations to Ṽ , υ̃, or z̃V reduce trade in the stock market. Likewise, changes
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in investors’risk-information quality or changes in the distribution of Ṽ that cause PD to

increase also reduce trade in the stock market.

Next, Proposition 4 shows that trading volume in the variance derivative has three com-

ponents, a risk-information component, τk1 (a∗) ẽi, a risk-uncertainty hedging component,

1
2τ

(
D2
Si −

∫ 1

0
D2
Sidi

)
, and a risk-sharing component, (τk3 (a∗)− 1) z̃V i. Risk-information re-

lated trade is driven by the deviation between the signal received by investor i, η̃i, and the

average signal received by investors,
∫ 1

0
η̃idi = υ̃, that is, ẽi. Risk-uncertainty hedging related

trade results from differences in investors’equilibrium beliefs regarding µ̃. Such differences

in beliefs lead investors to hold disparate positions in the stock. Investors who hold large

positions in the stock hedge the resulting variance uncertainty by purchasing the derivative

from investors with smaller positions in the stock. Finally, variance-risk sharing trade simply

captures investors’wish to trade away their idiosyncratic outside endowments of Ṽ .

Note that because the derivative price impacts trading volume in the equity, it also has

a spillover effect on trading volume in the derivative market. Since investors’ desires to

hedge risk uncertainty are driven by their equity positions, a reduction in trade in the equity

market also leads to a reduction in the risk-uncertainty hedging component of derivative

trade. Therefore, the derivative price PD is negatively associated with trade in both markets.

Finally, because the derivative price enters the equity risk premium, this suggests that the

equity price is positively associated with trade in both markets. In sum, we have the following

corollary.

Corollary 3 i) Increases in the derivative price driven by greater Ṽ or υ̃, or smaller z̃V ,

changes in the parameters σ2
zV
, σ2

zV i
, σ2

υ, or σ
2
e, or in the distribution of Ṽ lead to a decline

in trade in the stock.

ii) Increases in the derivative price driven by greater Ṽ or υ̃, or smaller z̃V lead to a decline

in trade in the variance derivative.

The first part of the corollary states that any change in the underlying information

structure of the model or the realized level of risk and noise in the derivative security decreases
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trading volume in the equity market. The second part of the corollary is weaker: it states only

that changes in the derivative price driven by the shocks Ṽ , υ̃, and z̃V decrease trade in the

derivative. Intuitively, the information structure affects trade in the derivative market in two,

potentially opposing ways: directly, through the risk-information component of trade, and

indirectly, through its impact on investors’willingness to trade on their mean information.

This renders comparative statics of derivative trade with respect to the information structure

diffi cult. In contrast, increases in the derivative price driven by Ṽ or z̃V affect the risk-

uncertainty hedging component of trading volume only, and hence, definitively lead to a

reduction in derivative volume.

This corollary has immediate implications for the covariance between trading volume

in equities and derivatives and price changes in the two markets. Formally, suppose that

prior to trade, there exist initial prices PS,0 and PD,0 and define ∆PS ≡ PS − PS,0 and

∆PD ≡ PD − PD,0. Then, we have the following result.

Corollary 4 The statistical relationship between contemporaneous returns in the stock and

derivative and trading volume in the two markets can be summarized as follows:

i) Cov (∆PS, V olS) > 0,

ii) Cov (∆PS, V olD) > 0,

iii) Cov (∆PD, V olS) < 0,

iv) Cov (∆PD, V olD) < 0.

2.4 Belief Dispersion and Prices

A well-documented result is that in a perfectly competitive rational expectations equilibrium,

only the average expectation of payoffs across investors and the average precision of investors’

beliefs affect expected returns (e.g., Banerjee (2011), Lambert, Leuz, and Verrecchia (2012)).

The thought experiment posed by these studies is as follows. Consider a change in the

underlying parameters of the model, such as the quality of investors’private information

and the extent of noise trade, that causes investors’ beliefs and equilibrium demands to
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diverge, but leads to no change in the average quality of their information. These studies

show that under the standard utility and distributional assumptions made in noisy rational

expectations models, the risk premium is purely a function of the precision of investors’

posteriors, and hence, prices will not change, on average. Our model suggests that in the

presence of uncertainty over a security’s risk, greater differences in investors’ equilibrium

beliefs lead to decreases in its equity price and increases in the price of the variance derivative.

Our results have implications for the empirical literature that studies the effect of dis-

agreement on individual equity prices, which documents mixed results on the relationship

between disagreement and equity prices depending upon the empirical proxy used to capture

disagreement (Diether, Malloy, and Scherbina (2002), Johnson (2004) and Goetzmann and

Massa (2005), Carlin, Longstaff, and Matoba (2014)). Our model suggests that investors’

risk preferences alone may lead to a positive relationship between disagreement and future

returns both in equity markets and derivative markets. Furthermore, empirically, our results

suggest that the relationship between disagreement and future returns to a security should

rise as investors face more uncertainty regarding that securities’risk.

Expression (9) demonstrates that the price of the variance derivative (and thus the risk

premium in the stock market) increases in the aggregate squared demands of investors in the

equity market,
∫ 1

0
D2
Sidi. This term reflects the aggregate desire of investors to hedge the

risk uncertainty created by their positions in the stock. Define the dispersion in investors’

beliefs regarding the expectation of x̃ as follows (e.g., Banerjee (2011)):

BeliefDispersion ≡
∫ 1

0

(
E (x̃|Φi)−

∫ 1

0

E (x̃|Φi) di

)2

di. (12)

Then, upon simplifying
∫ 1

0
D2
Sidi, we find that:

∫ 1

0

D2
Sidi =

(
τ

PD + V ar (µ̃|Φi)

)2

BeliefDispersion+ V ar (µ̃|Φi)
2 σ2

zµi
+ z̄2, (13)

i.e.,
∫ 1

0
D2
Sidi increases in the dispersion in investors’equilibrium beliefs. Intuitively, when
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investors’beliefs grow disparate, optimistic investors increase their positions in the stock

market and pessimistic investors decrease their positions. As investors’desire to hedge risk

uncertainty is a function of their squared demand for the stock, both types of investors have

a greater desire to hedge, and thus, the derivative price increases. Since this raises the cost

to hedging the risk uncertainty that accompanies a position in the equity, this increases the

equity risk premium. Note that in equilibrium, variation in investors’beliefs holding fixed

their average precision may stem from variation in the underlying parameters σ2
µ, σ

2
ε, σ

2
zµ,

and σ2
zµi
. In sum we have the following proposition:16

Proposition 5 Holding fixed the precision of investors’ beliefs regarding µ̃, the derivative

price PD increases and the expected stock price E (PS) decreases in the dispersion in investors’

equilibrium beliefs regarding the mean of x̃,
∫ 1

0

(
E (x̃|Φi)−

∫ 1

0
E (x̃|Φi) di

)2

di.

2.5 Variance Risk Premium

A large body of empirical evidence demonstrates that, at both the index and individual equity

level, variance swaps have prices that overshoot investors’ expectations of the underlying

return variance. The size of this premium has been termed the variance risk premium

(VRP) (e.g., Bakshi and Kapadia (2003), Bollerslev, Tauchen, and Zhou (2009), Carr and

Wu (2009)). Existing theory argues that the index-level VRP results from variance swaps’

negative betas: when realized market variance is high, returns tend to be low (Carr and

Wu (2009)). Alternatively, Bakshi and Madan (2006) argue that the VRP may arise from

investors’preferences for higher moments. In line with the latter explanation, in our model,

a variance risk premium can arise due to investors’preference for skewness; the variance

derivative pays off when risk is high, such that holding the derivative alongside the equity

creates positive skewness in the investors’wealth distribution. In our model, the size of

this premium is related to the dispersion in investors’beliefs regarding µ̃, trading volume in

16Note that we have also solved the model in the case in which investors have exogenous variation in their
prior beliefs regarding the mean of x̃. Variation in prior beliefs also is priced, unlike in prior models. These
results are available upon request.
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the equity and derivative markets, and the equity price. Note that our model speaks most

strongly to index-level variance risk premia, where investors’risk aversion plays a greater

role.

Specifically, we define the VRP as −1 times the average over investors’expectations of

the dollar returns to the variance derivative, i.e.,

V RP ≡
∫ 1

0

E
(
PD − Ṽ |Φi

)
di. (14)

This definition captures the difference between how investors price the variance derivative Ṽ

and their average expectation of the future variance. As discussed in section 2.1, the variance

derivative’s price may be seen as the price of a variance swap. Moreover, the average investor

belief regarding Ṽ ,
∫ 1

0
E
(
Ṽ |Φi

)
di, should, in expectation, approximate the ex-post realized

variance Ṽ . Thus, the definition corresponds closely to the empirical measures found in

Carr and Wu (2009) and Bollerslev, Tauchen, and Zhou (2009), which equal the price of

the variance swap less the ex-post realized return variance. Note that under this definition,

a higher VRP corresponds to a greater excess valuation of the variance derivative. That

is, unlike the risk premium in the equity market, which tends to be negative, the VRP is

generally positive.

First, note that section 2.4 suggests the price of the variance derivative is related to

investors’disagreement over µ̃ in equilibrium,
∫ 1

0

(
E (x̃|Φi)−

∫ 1

0
E (x̃|Φi) di

)2

di. Therefore,

the VRP increases in investors’equilibrium disagreement over µ̃. Interestingly, this suggests

that despite the fact that µ̃ has no direct impact on investors’beliefs regarding Ṽ , the VRP

is affected by investors’private information quality regarding µ̃ (σ2
n and σ

2
ε), the amount

of noise in investors’endowments of η̃ (σ2
zµ and σ

2
zµi
), and prior uncertainty over µ̃ (σ2

µ).

Intuitively, disagreement regarding µ̃ indirectly lead them to hold different quantities of Ṽ

in equilibrium, which affects the VRP.

Second, the model implies a negative relationship between the variance risk premium
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and trading volume in the two markets. In particular, Corollary 4 implies that when the

derivative price is higher (corresponding to a higher VRP), investors are more averse to the

risk uncertainty that results from a position in the stock market. This makes them less

willing to trade on their information regarding µ̃, such that trading volumes in both the

stock and derivative are lower.

Finally, the model also suggests a connection between the variance risk premium and

future equity returns, which has been empirically validated (Bollerslev, Tauchen, and Zhou

(2009)). This follows trivially from expression (5), which shows that the risk premium in

the stock market increases with PD. Effectively, both the VRP and the equity price capture

investors’aversion to variance uncertainty. In summary, we have the following proposition.

Proposition 6 i) The variance risk premium increases in investors’ belief dispersion re-

garding µ̃,
∫ 1

0

(
E (x̃|Φi)−

∫ 1

0
E (x̃|Φi) di

)2

di.

ii) The variance risk premium is negatively correlated with trading volume in the stock and

derivative markets.

iii) The equilibrium equity price decreases one-for-one with increases in the variance risk

premium.

As a final point, note that the one-for-one relationship between the VRP and the equity

price implies that even when driven by noise, increases in the derivative price lead to an

increase in the equity risk premium. When investors’noisy endowments of Ṽ are greater,

they must hold more of Ṽ in equilibrium, which causes them to demand a greater VRP. If

the investors had mean-variance preferences rather than CARA utility, their demands for

the stock would be unaffected by their endowments in Ṽ , because the stock has a covariance

of zero with Ṽ : Cov
(
x̃, Ṽ

)
= 0.17

17To see this, note that, applying E (x̃) = E (µ̃) and the independence of µ̃ and Ṽ ,

E
(
x̃Ṽ
)

= E
(
E
(
x̃Ṽ |µ̃

))
(15)

= E
(
µ̃Ṽ
)

= E (x̃)E
(
Ṽ
)
.
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3 Conclusion

This article develops a noisy rational expectations model in which risk-averse investors pos-

sess information not only on a stock’s expected payoffs, but also the risk of these payoffs.

Investors in the model can trade in a stock or a derivative security whose value increases

in the riskiness of the stock’s payoffs. In the equilibrium studied in the model, the stock

price serves as an aggregator of investors’mean information regarding and the derivative

price serves as an aggregator of investors’risk information. Investors trade on information

regarding expected payoffs in both the stock and derivative markets, as the derivative serves

as insurance against adverse fluctuations in the risk of the stock’s payoffs. On the other

hand, investors trade on risk information in the derivative only. The model has implications

for relationship between trading volume in stock and derivative markets and the respective

prices in these two markets. Moreover, it suggests that belief dispersion impacts expected

stock returns and derivative prices. Finally, it justifies the empirically documented negative

relationship between the variance risk premium and returns in the stock market and offers

predictions on the association between trading volume, information quality, and variance

risk premia.

In the current set up of the model, investors have homogenous information quality, which

leads to a derivative price that is uninformative regarding investors’information regarding

expected equity payoffs. Preliminary investigation suggests that this will not be the case

when investors have heterogenous information quality, since, in this case, the dispersion in

their beliefs will be a function of the fundamental µ̃. It may be interesting, but technically

challenging, to study the value of the derivative price to investors when it aggregates both

information on the mean of future cash flows and their risk. Furthermore, a weakness of the

model is that because the variance distribution is fully general, it is diffi cult to offer much

intuition into how the parameters of the variance distribution impact the derivative price.

It may be interesting to study more specific distributions of the variance Ṽ in order to offer
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more definitive comparative statics on the drivers of the derivative price in the model.

4 Appendix

Proof of Proposition 1. Investor i’s first-order conditions with respect to their equity

and derivative demands are equal to:

0 =
∂

∂DSi

E

{
− exp

[
−1

τ

(
DSi (x̃− PS) +DSi

(
Ṽ − PD

)
+ Z̃µiµ̃+ Z̃V iṼ

)]
|Φi

}
(16)

0 =
∂

∂DDi

E

{
− exp

[
−1

τ

(
DSi (x̃− PS) +DSi

(
Ṽ − PD

)
+ Z̃µiµ̃+ Z̃V iṼ

)]
|Φi

}
.(17)

Under the conjecture that FPD (·|PS, µ̃) = FPD (·|PS), the derivative price serves no role in

updating on µ̃, and hence, its distribution is irrelevant in determining the posterior distribu-

tion of µ̃ given the investors’information. Consequently, upon conditioning on the uncertain

variance Ṽ , due to the linearity of PS and ϕ̃i in µ̃, the investors’belief regarding x̃ is normally

distributed: x̃|Ṽ ,Φi ∼ N
(
E (x̃|Φi) , V ar (µ̃|Φi) + Ṽ

)
. Hence, evaluating the expectations in

expressions 16 and 17 conditional on Ṽ yields the following simplified first-order conditions:

0 =
∂

∂DSi

EV

{
− exp

[
−1

τ
W
(
DSi, DDi, Ṽ

)]
|Φi

}
(18)

0 =
∂

∂DDi

EV

{
− exp

[
−1

τ
W
(
DSi, DDi, Ṽ

)]
|Φi

}
,

where:

W (DSi, DDi, V ) (19)

≡
(
DSi + Z̃µi

)
E (µ̃|Φi)−DSiPS −DDiPD

− 1

2τ

(
DSi + Z̃µi

)2

V ar (µ̃|Φi)−
(

1

2τ
D2
Si −DDi − Z̃V i

)
Ṽ .
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As we show in the proof of Proposition 2, Ṽ |Φi lies in the exponential family and thus has a

moment-generating function that is defined on the reals, i.e., ∀t ∈ <, E
(
− exp

(
tṼ
)
|Φi

)
<

∞. This implies that the order of differentiation and expectation can be interchanged in

these two conditions,1819 which yields the following:

0 = EV

{[
E (µ̃|Φi)− PS −

1

τ

(
DSi + Z̃µi

)
V ar (µ̃|Φi)−

1

τ
DSiṼ

]
exp

[
−1

τ
W
(
DSi, DDi, Ṽ

)]
|Φi

}
0 = EV

{(
PD − Ṽ

)
exp

[
−1

τ
W
(
DSi, DDi, Ṽ

)]
|Φi

}
. (20)

Given that PD is known conditional on Φi, the second condition implies that:

EV

{
exp

[
−1

τ
W
(
DSi, DDi, Ṽ

)]
|Φi

}
PD = EV

{
Ṽ exp

[
−1

τ
W
(
DSi, DDi, Ṽ

)]
|Φi

}
. (21)

Substituting this result into the first equation in expression (20) and rearranging, we find:

[
E (µ̃|Φi)− PS −

1

τ

(
DSi + Z̃µi

)
V ar (µ̃|Φi)

]
EV

{
exp

[
−1

τ
W
(
DSi, DDi, Ṽ

)]
|Φi

}
=

1

τ
DSiPDEV

{
exp

[
−1

τ
W
(
DSi, DDi, Ṽ

)]
|Φi

}
. (22)

18In particular, let M (t) ≡ E
(
− exp

(
tṼ
)
|Φi
)
. We wish to show that d

dtM (t) = E
(
−Ṽ exp

(
tṼ
)
|Φi
)
.

In order to do so, we apply the dominated convergence theorem. We show that, for any sequence {tn} with
tn → t, there exists a function κ (V ) such that:∣∣∣∣− exp (tnV )− exp (tV )

tn − t

∣∣∣∣ < κ (V )

and E (κ (V )) < ∞. To find such a κ (V ), note that the mean value theorem implies that there exists a ξ
between tn and t such that: ∣∣∣∣− exp (tnV )− exp (tV )

tn − t

∣∣∣∣ = |−ξV exp (ξV )|

= ξV exp (ξV )

Now, using the fact that V ≤
∞∑
j=0

1
j!V

j = exp (V ), we get that ξV exp (ξV ) < exp ((ξ + 1)V ). Letting

κ (V ) = exp ((ξ + 1)V ), and using the fact that the MGF exists for all reals, we have the result.
19Since we may change the order of differentiation and expectation, and the utility function is concave,

the second order condition holds.
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Solving for DSi yields:

DSi = τ
E (µ̃|Φi)− PS − 1

τ
V ar (µ̃|Φi) Z̃µi

PD + V ar (µ̃|Φi)
. (23)

The condition for market clearing requires that
∫ 1

0
DSidi = z̄, i.e.,

∫ 1

0

τ
E (µ̃|Φi)− PS − 1

τ
V ar (µ̃|Φi) Z̃µi

PD + V ar (µ̃|Φi)
di = z̄. (24)

Solving for PS and using the fact that E (µ̃|Φi) = E (x̃|Φi), we find:

PS =

∫ 1

0

E (x̃|Φi) di−
1

τ
z̃µV ar (µ̃|Φi)−

1

τ
z̄ (PD + V ar (µ̃|Φi)) . (25)

In the proof of Proposition 3, we show that there is a unique linear equilibrium price that

satisfies this equation.

Proof of Corollary 1. Note that there is no dependence of E (x̃|Φi) on {η̃i}i∈[0,1] and

− 1
τ
z̃µV ar (µ̃|Φi) − 1

τ
z̄ (PD + V ar (µ̃|Φi)) depends upon Ṽ only through PD. Thus, we have

that FPS
(
·|PD, Ṽ

)
= FPS (·|PD).

Proof of Proposition 2. We start by conjecturing a generalized linear equilibrium, as in

Breon-Drish (2015b). Specifically, conjecture that price satisfies:

PD

(
Ṽ + υ̃, z̃V

)
= δ

(
l
(
Ṽ + υ̃, z̃V

))
(26)

where δ′ > 0

and l
(
Ṽ + υ̃, z̃V

)
= a

(
Ṽ + υ̃

)
+ z̃V ,

for a constant a to be determined as part of the equilibrium. Given that FPS
(
·|PD, Ṽ

)
=

FPS (·|PD), we have that FṼ |PD,PS ,η̃i,Z̃V i = FṼ |PD,η̃i,Z̃V i . As δ
′ > 0, investors can invert the

linear statistic l
(
Ṽ + υ̃, z̃V

)
from price, and hence, the information in PD is equivalent

to l̃
(
Ṽ + υ̃, z̃V

)
: FṼ |PD,η̃i,Z̃V i = FṼ |l̃,η̃i,Z̃V i . Note that z̃V |Z̃V i ∼ N

(
σ2zV

ZV i

σ2zV
+σ2zV i

,
σ2zV

σ2zV i
σ2zV

+σ2zV i

)
.
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Therefore, conditional on Φi, investor i′s belief distribution regarding Ṽ satisfies (where

differential notation simply indicates that the distribution of Ṽ may exhibit discontinuities):

dFṼ |l̃,η̃i,Z̃V i (y) (27)

∝ dFṼ (y) dFZ̃V i (ZV i) dFl̃,η̃i|Ṽ ,Z̃V i (l, ηi)

∝ dFṼ (y) dFl̃,η̃i|Ṽ ,Z̃V i (l, ηi)

∝ exp

−1

2

(σ2
υ + σ2

e)
(
l − ay − σ2zV

ZV i

σ2zV
+σ2zV i

)2

− 2aσ2
υ

(
l − ay − σ2zV

ZV i

σ2zV
+σ2zV i

)
(ηi − y)

(σ2
υ + σ2

e)
(
a2σ2

υ +
σ2zV

σ2zV i
σ2zV

+σ2zV i

)
− a2σ4

υ

−1

2

(
a2σ2

υ +
σ2zV

σ2zV i
σ2zV

+σ2zV i

)
(ηi − y)2

(σ2
υ + σ2

e)
(
a2σ2

υ +
σ2zV

σ2zV i
σ2zV

+σ2zV i

)
− a2σ4

υ

 dldηidFṼ (y) .

Tedious algebra yields that this is proportional to:

exp

−1
2

(
a2σ2

e +
σ2zV

σ2zV i
σ2zV

+σ2zV i

)
y2 +

((
σ2zV

σ2zV i
σ2zV

+σ2zV i

)
ηi − a

σ2zV
σ2e

σ2zV
+σ2zV i

ZV i + aσ2
el
)
y

a2σ2
υσ

2
e +

σ2zV
σ2zV i

(σ2υ+σ2e)

σ2zV
+σ2zV i

 dldηidFṼ (y) .

(28)

Defining this final expression as J (y; l, ηi, ZV i), we may write:

dFṼ |l̃,η̃i,Z̃V i (y) =
J (y; l, ηi, ZV i)∫

Υ
J (x; l, ηi, ZV i) dx

. (29)

This distribution belongs to the exponential family, i.e., it may be written in the form
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exp
{(
k1 (a) η̃i + k2 (a) l̃ + k3 (a) Z̃V i

)
y − g

(
k1 (a) η̃i + k2 (a) l̃ + k3 (a) Z̃V i

)}
H (y; a) where:

k1 (a) =
σ2
zV
σ2
zV i

a2σ2
υσ

2
e

(
σ2
zV

+ σ2
zV i

)
+ σ2

zV
σ2
zV i

(σ2
υ + σ2

e)
(30)

k2 (a) =
aσ2

e

(
σ2
zV

+ σ2
zV i

)
a2σ2

υσ
2
e

(
σ2
zV

+ σ2
zV i

)
+ σ2

zV
σ2
zV i

(σ2
υ + σ2

e)

k3 (a) =
−aσ2

zV
σ2
e

a2σ2
υσ

2
e

(
σ2
zV

+ σ2
zV i

)
+ σ2

zV
σ2
zV i

(σ2
υ + σ2

e)

g (ξ) = log

[∫
Υ

exp

(
ξx− 1

2

a2σ2
e

(
σ2
zV

+ σ2
zV i

)
+ σ2

zV
σ2
zV i

a2σ2
υσ

2
e

(
σ2
zV

+ σ2
zV i

)
+ σ2

zV
σ2
zV i

(σ2
υ + σ2

e)
x2

)
dFV (x)

]
and

H (y; a) = exp

[
−1

2

a2σ2
e

(
σ2
zV

+ σ2
zV i

)
+ σ2

zV
σ2
zV i

a2σ2
υσ

2
e

(
σ2
zV

+ σ2
zV i

)
+ σ2

zV
σ2
zV i

(σ2
υ + σ2

e)
y2

]
dFV (y) .

This implies that Ṽ |η̃i, l̃, Z̃V i has moment-generating function:

E
[
exp

(
tṼ
)
|η̃i, l̃, Z̃V i

]
= exp

{
g
(
k1 (a) η̃i + k2 (a) l̃ + k3 (a) Z̃V i + t

)
(31)

−g
(
k1 (a) η̃i + k2 (a) l̃ + k3 (a) Z̃V i

)}
.

Evaluating the expectation in the investors’first-order condition with respect to DDi from
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expression (20) and simplifying yields:

0 = PDEV

{
exp

[
−1

τ
W
(
DSi, DDi, Ṽ

)]
|Φi

}
− EV

{
Ṽ exp

[
−1

τ
W
(
DSi, DDi, Ṽ

)]
|Φi

}
= PD exp

{
g

[
k1 (a) η̃i + k2 (a) l̃ + k3 (a) Z̃V i +

1

τ

(
1

2τ
D2
Si −DDi − Z̃V i

)]
(32)

−g
[
k1 (a) η̃i + k2 (a) l̃ + k3 (a) Z̃V i

]
+

1

τ
DDiPD

}
− ∂

∂t

[
exp

{
g
(
k1 (a) η̃i + k2 (a) l̃ + k3 (a) Z̃V i + t

)
− g

(
k1 (a) η̃i + k2 (a) l̃ + k3 (a) Z̃V i

)
+

1

τ
DDiPD

}]
t= 1

τ ( 1
2τ
D2
Si−DDi−Z̃V i)

=

{
PD − g′

[
k1 (a) η̃i + k2 (a) l̃ + k3 (a) Z̃V i +

1

τ

(
1

2τ
D2
Si −DDi − Z̃V i

)]}
∗ exp

{
g

[
k1 (a) η̃i + k2 (a) l̃ + k3 (a) Z̃V i −

1

τ
W (DSi, DDi, V )

]
−g
[
k1 (a) η̃i + k2 (a) l̃ + k3 (a) Z̃V i

]
+

1

τ
DDiPD

}
,

which yields:

DDi = τ
(
k1 (a) η̃i + k2 (a) l̃ + k3 (a) Z̃V i

)
− Z̃V i − τg′−1 (PD) +

1

2τ
D2
Si.

The market-clearing condition is:

∫ 1

0

[
τ
(
k1 (a) η̃i + k2 (a) l̃ + k3 (a) Z̃V i

)
− τg′−1 (PD) +

1

2τ
D2
Si

]
di−

∫ 1

0

Z̃V idi = 0. (33)

Applying the law-of-large numbers and simplifying yields:

PD = g′
{

1

τ

[
τk1 (a)

(
Ṽ + υ̃

)
+ (τk3 (a)− 1) z̃V + τk2 (a) l̃ +

1

2τ

∫ 1

0

D2
Sidi

]}
. (34)

In order for this to satisfy our conjecture that price depends on Ṽ and z̃V only through the

linear statistic l
(
Ṽ + υ̃, z̃V

)
= a

(
Ṽ + υ̃

)
+ z̃V , we must have that l̃ = τk1(a)

τk3(a)−1

(
Ṽ + υ̃

)
+ z̃V .

This is equivalent to τk1(a)
τk3(a)−1

= a. Substituting k1 (a) and k3 (a) and simplifying yields the
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following equilibrium condition:

a =
τ

σ2zV
σ2zV i

a2σ2υσ
2
e(σ2zV +σ2zV i)+σ2zV

σ2zV i
(σ2υ+σ2e)

−τ aσ2zV
σ2e

a2σ2υσ
2
e(σ2zV +σ2zV i)+σ2zV

σ2zV i
(σ2υ+σ2e)

− 1
(35)

0 =
(
σ2
zV
σ2
eσ

2
υ + σ2

zV i
σ2
eσ

2
υ

)
a3 + τσ2

zV
σ2
ea

2 +
(
σ2
zV
σ2
zV i
σ2
e + σ2

zV
σ2
zV i
σ2
υ

)
a+ τσ2

zV
σ2
zV i
.

As this is a cubic equation with positive third-order and constant terms, it has at least one

negative solution. Hence, an equilibrium PD is defined by:

PD = g′
{

1

τ

[
(τk3 (a∗)− 1)

(
τk1 (a∗)

τk3 (a∗)− 1

(
Ṽ + υ̃

)
+ z̃V

)
+ τk2 (a∗) l̃ +

1

2τ

∫ 1

0

D2
Sidi

]}
= g′

{
1

τ

[
(τ (k2 (a∗) + k3 (a∗))− 1) l̃ +

1

2τ

∫ 1

0

D2
Sidi

]}
, (36)

where a∗ is a solution to equation (35). Letting r (a∗) = τ (k2 (a∗) + k3 (a∗))−1, we have the

result in the statement of the proof. We prove that PD increases in Ṽ and υ̃ and decreases

in z̃V in the proof of Proposition 3.

Proof of Corollary 2. Expression (9) shows the only dependence of PD on µ̃ is through

the term,
∫ 1

0
D2
Sidi. Moreover, note that:

∫ 1

0

D2
Sidi =

∫ 1

0

[
τ
E (x̃|Φi)− PS − τ−1V ar (µ̃|Φi) Z̃µi

PD + V ar (µ̃|Φi)

]2

di (37)

=

∫ 1

0

[
τ
E (x̃|Φi)−

∫ 1

0
E (x̃|Φi) di− τ−1z̃µiV ar (µ̃|Φi) + τ−1z̄ (PD + V ar (µ̃|Φi))

PD + V ar (µ̃|Φi)

]2

di

=

(
1

PD + V ar (µ̃|Φi)

)2 ∫ 1

0

[
τ

(
E (x̃|Φi)−

∫ 1

0

E (x̃|Φi) di

)
− z̃µiV ar (µ̃|Φi)

]2

di+ z̄2.

The term
∫ 1

0

[
τ
(
E (x̃|Φi)−

∫ 1

0
E (x̃|Φi) di

)
− z̃µiV ar (µ̃|Φi)

]2

di does not depend on µ̃. To

see this, note that given the conjectured linear equilibrium and normality of the terms µ̃, ε̃,

z̃µi, and z̃µ, E (x̃|Φi)−
∫ 1

0
E (x̃|Φi) di is linear in PS, Z̃µi and ϕ̃i. Moreover, because investors’

information precisions are homogenous, they apply equal linear weights to each of PS, Z̃µi
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and ϕ̃i. Let E (x̃|Φi) = D0 +D1ϕ̃i +D2Z̃µi +D3PS. We have:

∫ 1

0

[
E (x̃|Φi)−

∫ 1

0

E (x̃|Φi) di− z̃µiV ar (µ̃|Φi)

]2

di (38)

=

∫ 1

0

[
D0 +D1ϕ̃i +D2Z̃µi +D3PS

−
∫ 1

0

(
D0 +D1ϕ̃i +D2Z̃µi +D3PS

)
di− z̃µiV ar (µ̃|Φi)

2

]
di

=

∫ 1

0

[D1ε̃i + (D2 − V ar (µ̃|Φi)) z̃µi]
2 di

= D2
1

∫ 1

0

ε̃2
i di+ (D2 − V ar (µ̃|Φi))

2

∫ 1

0

z̃2
µidi

= D2
1σ

2
ε + (D2 − V ar (µ̃|Φi))

2 σ2
zµi
.

Since this is not a function of µ̃, the conjecture has been verified.

Proof of Proposition 3. Using the results from Proposition 1 and Proposition 2, a

rational expectations equilibrium must simultaneously satisfy the following three conditions:

(1) DSi = τ
E (x̃|Φi)− PS − τ−1Z̃µiV ar (µ̃|Φi)

PD + V ar (µ̃|Φi)
(39)

(2) a∗ solves equation 35, and (40)

(3) PD = g′
{

1

2τ

[
(τ (k2 (a∗) + k3 (a∗))− 1) l̃ +

1

2τ

∫ 1

0

D2
Sidi

]}
. (41)

Note that the first condition itself contains a fixed-point problem in the sense that E (x̃|Φi)

is a function of PS, which is impacted by investors’ demands DSi. We first show that

fixing PD, there is a unique solution to this fixed-point problem, i.e., there is a unique

equilibrium in the equity market given PD. To begin, we derive E (x̃|Φi) and V ar (µ̃|Φi).

Let A ≡ Cov(x̃,PS |ϕ̃i,Z̃µi,PD)
V ar(PS |ϕ̃i,Z̃µi,PD)

. Note that:

E (x̃|Φi) = E
(
x̃|ϕ̃i, Z̃µi, PD

)
+ A

(
PS − E

(
PS|ϕ̃i, Z̃µi, PD

))
, (42)

and V ar (µ|Φi) = V ar
(
µ|ϕ̃i, Z̃µi, PD

)
− ACov (x̃, PS|ϕi, Zµi, PD) .
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The following facts may be easily verified by utilizing the variance-covariance matrix of

x̃, PS, ϕ̃i, Z̃µi and applying the properties of the multivariate-normal distribution:

E
(
x̃|ϕ̃i, Z̃µi, PD

)
=

(σ2
n + σ2

ε)m+ σ2
µϕ̃i

σ2
µ + σ2

n + σ2
ε

, (43)

Cov
(
x̃, PS|ϕ̃i, Z̃µi, PD

)
=

αµσ
2
µσ

2
ε

σ2
n + σ2

µ + σ2
ε

,

V ar
(
PS|ϕ̃i, Z̃µi, PD

)
= σ2

zµα
2
z + α2

µ

(
σ2
n + σ2

µ

)
−

α2
zσ

4
zµ

σ2
zµ + σ2

zµi

−
α2
µ

(
σ2
n + σ2

µ

)2

σ2
n + σ2

µ + σ2
ε

, and

E
(
PS|ϕ̃i, Z̃µi, PD

)
= α0 + αµ

ϕ̃i
(
σ2
n + σ2

µ

)
+mσ2

ε

σ2
n + σ2

µ + σ2
ε

+
αzσ

2
zµ

σ2
zµ + σ2

zµi

Z̃µi.

Substituting into expressions (42) and (40) and simplifying, we find:

PS =
1

1− A

(
(σ2

n + σ2
ε)m+ σ2

µ (µ+ n)

σ2
µ + σ2

n + σ2
ε

− A
(
α0 + αµ

(µ+ n)
(
σ2
n + σ2

µ

)
+mσ2

ε

σ2
n + σ2

µ + σ2
ε

+
αzσ

2
zµ

σ2
zµ + σ2

zµi

Z̃µi

))

−1

τ

1

1− A

(
(z̃µ + z̄)

(
σ2
µ

σ2
n + σ2

ε (1− Aαµ)

σ2
n + σ2

µ + σ2
ε

)
+ z̄PD

)
. (44)

Comparing coeffi cients with the conjectured form for price, this implies that:

αµ =
1

1− A
σ2
µ − Aαµ

(
σ2
n + σ2

µ

)
σ2
µ + σ2

n + σ2
ε

(45)

=
σ2
µ

σ2
n + σ2

µ + σ2
ε (1− A)

, and

αz = −1

τ

1

1− A

(
σ2
µ

σ2
n + σ2

ε (1− Aαµ)

σ2
n + σ2

µ + σ2
ε

)
− A

1− A
αzσ

2
zµ

σ2
zµ + σ2

zµi

(46)

= −1

τ
σ2
µ

σ2
zµ + σ2

zµi

σ2
zµ + σ2

zµi
(1− A)

σ2
n + σ2

ε (1− A)

σ2
n + σ2

µ + σ2
ε (1− A)

.

Hence, for there to exist an equilibrium, there must exist an A∗ ∈ (0, 1) that satisfies the

above conditions as well as:

A∗ =

αµσ2µσ
2
ε

σ2n+σ2µ+σ2ε

σ2
zµα

2
z + α2

µ

(
σ2
n + σ2

µ

)
− α2zσ

4
zµ

σ2zµ+σ2zµi
− α2µ(σ2n+σ2µ)

2

σ2n+σ2µ+σ2ε

. (47)
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Substituting, we arrive at a cubic equation in A∗ that is positive when A∗ = 1 and negative

when A∗ = 0. This implies the existence of a solution A∗ ∈ (0, 1) and hence the existence

of a solution to equilibrium condition 1. Next, consider the second and third equilibrium

conditions. Notice that:

∫ 1

0

D2
Sidi = τ 2

∫ 1

0

(
E (x̃|Φi)− PS − τ−1Z̃µiV ar (µ̃|Φi)

PD + V ar (µ̃|Φi)

)2

di (48)

=
B (A∗)

(PD + V ar (µ̃|Φi))
2 ,

where B (A∗) ≡ τ 2

(∫ 1

0

(
E (x̃|Φi)− PS − τ−1Z̃µiV ar (µ̃|Φi)

)2

di

)
.

Thus, we have:

PD = g′
{

1

τ

[
(τ (k2 (a∗) + k3 (a∗))− 1) l̃ +

1

2τ

∫ 1

0

D2
Sidi

]}
(49)

= g′
{

1

τ

[
(τ (k2 (a∗) + k3 (a∗))− 1) l̃ +

1

2τ

B (A∗)

(PD + V ar (µ̃|Φi))
2

]}
.

Let h
(
PD; l̃

)
= PD − g′

{
1
2τ

[
(τ (k2 (a∗) + k3 (a∗))− 1) l̃ + 1

2τ
B(A∗)

(PD+V ar(µ̃|Φi))2

]}
. Note that if

h
(
·; l̃
)
has a unique zero, then, by equilibrium condition 2, we can solve for the unique PD.

Hence, we will have proven that there exists a unique rational expectations equilibrium for

each solution a∗ to equation (35) and solution A∗ to equation (47). To show that this is the

case, note first that g′ is continuous. Thus, noting that B (A∗) is unaffected by PD, we have

lim
PD→0

h
(
PD; l̃

)
(50)

= −g′
(

lim
PD→0

1

τ

[
(τ (k2 (a∗) + k3 (a∗))− 1) l̃ +

1

2τ

B (A∗)

(PD + V ar (µ̃|Φi))
2

])
= −g′

(
1

τ

[
(τ (k2 (a∗) + k3 (a∗))− 1) l̃ +

1

2τ

B (A∗)

V ar (µ̃|Φi)
2

])
< 0,
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since g′ is always positive (see Breon-Drish (2015a)). Moreover,

lim
PD→∞

h
(
PD; l̃

)
(51)

= lim
PD→∞

{
PD − g′

(
lim

PD→∞

1

2τ

[
(τ (k2 (a∗) + k3 (a∗))− 1) l̃ +

1

2τ

B (A∗)

(PD + V ar (µ̃|Φi))
2

])}
= lim

PD→∞
PD − g′

(
1

2τ

[
(τ (k2 (a∗) + k3 (a∗))− 1) l̃

])
=∞.

This ensures a positive solution PD exists. To see that it is unique, note that:

∂

∂PD
h
(
PD; l̃

)
(52)

=
∂

∂PD

(
PD − g′

(
1

2τ

[
(τ (k2 (a∗) + k3 (a∗))− 1) l̃ +

1

2τ

B (A∗)

(PD + V ar (µ̃|Φi))
2

]))
= 1 + 2g′′ ∗ B (A∗)

τ (PD + V ar (µ̃|Φi))
3 ,

which is positive given that g′′ > 0.20 Finally, we demonstrate that dPD
dzV

< 0 and dPD
dV

> 0.

Applying the implicit-function theorem, since
∂h(PD;l̃)
∂PD

> 0, dPD
dzV

has the sign of −∂h(PD;l̃)
∂zV

and

dPD
dV

has the sign of −∂h(PD;l̃)
∂V

. Given that l̃ = a∗Ṽ + z̃V ,

∂h
(
PD; l̃

)
∂zV

(53)

= (τ (k2 (a∗) + k3 (a∗))− 1) g′′
(

1

2τ

[
(τ (k2 (a∗) + k3 (a∗))− 1) l̃ +

1

2τ

B

(PD + V ar (µ̃|Φi))
2

])
, and

∂h
(
PD; l̃

)
∂V

(54)

= a∗ (τ (k2 (a∗) + k3 (a∗))− 1) g′′
(

1

2τ

[
(τ (k2 (a∗) + k3 (a∗))− 1) l̃ +

1

2τ

B

(PD + V ar (µ̃|Φi))
2

])
.

20For a proof, see Lemma A7 in Breon-Drish (2015a).
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Now,

τ (k2 (a∗) + k3 (a∗))− 1 (55)

= τ

(
a∗σ2

e

(
σ2
zV

+ σ2
zV i

)
a∗2σ2

υσ
2
e

(
σ2
zV

+ σ2
zV i

)
+ σ2

zV
σ2
zV i

(σ2
υ + σ2

e)
−

a∗σ2
zV
σ2
e

a∗2σ2
υσ

2
e

(
σ2
zV

+ σ2
zV i

)
+ σ2

zV
σ2
zV i

(σ2
υ + σ2

e)

)
− 1

= τ

(
a∗σ2

eσ
2
zV i

a∗2σ2
υσ

2
e

(
σ2
zV

+ σ2
zV i

)
+ σ2

zV
σ2
zV i

(σ2
υ + σ2

e)

)
− 1 < 0,

since a∗ < 0. Hence,
∂h(PD;l̃)
∂zV

< 0 and
∂h(PD;l̃)

∂V
> 0. This completes the proof.

Proof of Proposition 4. Simplifying the definition of trading volume in the stock, we

find:

V olS =

∫ 1

0

∣∣∣∣∣τ E (x̃|Φi)− PS − τ−1Z̃µiV ar (µ̃|Φi)

PD + V ar (µ̃|Φi)
−
∫ 1

0

DSidi

∣∣∣∣∣ di (56)

= τ

∫ 1

0

∣∣∣∣∣E (x̃|Φi)−
∫ 1

0
E (x̃|Φi) di− τ−1V ar (µ̃|Φi) z̃µi

PD + V ar (µ̃|Φi)

∣∣∣∣∣ di.
Likewise, applying expression (34) to the definition of trading volume in the derivative, we

find:

V olD (57)

=

∫ 1

0

∣∣∣∣τ (k1 (a∗) η̃i + k2 (a∗) l̃ + k3 (a∗) Z̃V i

)
− Z̃V i − τg′−1 (PD) +

1

2τ
D2
Si

∣∣∣∣ di
=

∫ 1

0

∣∣∣τ (k1 (a∗) η̃i + k2 (a∗) l̃ + k3 (a∗) Z̃V i

)
− Z̃V i−(

τk1 (a)
(
Ṽ + υ̃

)
+ τk2 (a) l̃ + (τk3 (a)− 1) z̃V +

1

2τ

∫ 1

0

D2
Sidi

)
+

1

2τ
D2
Si

∣∣∣∣ di
=

∫ 1

0

∣∣∣∣τk1 (a∗) ẽi + (τk3 (a∗)− 1) z̃V i +
1

2τ

(
D2
Si −

∫ 1

0

D2
Sidi

)∣∣∣∣ di.

Proof of Corollary 3. i) Note that since E (x̃|Φi) and V ar (µ̃|Φi) are independent of PD
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by the proof of Proposition 3,

V olS =
τ

PD + V ar (µ̃|Φi)

∫ 1

0

∣∣∣∣E (x̃|Φi)−
∫ 1

0

E (x̃|Φi) di− τ−1V ar (µ̃|Φi) z̃µi

∣∣∣∣ di (58)

is trivially decreasing in PD. Applying the chain rule and the fact that PD increases in Ṽ

and υ̃ and declines in z̃V , the result follows.

ii) Note that:

V olD =

∫ 1

0

∣∣∣∣τk1 (a) ẽi + (τk3 (a)− 1) z̃V i +
1

2τ

(
D2
Si −

∫ 1

0

D2
Sidi

)∣∣∣∣ di (59)

is only affected by Ṽ , υ̃, and z̃V through D2
Si −

∫ 1

0
D2
Si. We have:

D2
Si −

∫ 1

0

D2
Sidi = τ 2

(E (x̃|Φi)− PS − τ−1Z̃µiV ar (µ̃|Φi)

PD + V ar (µ̃|Φi)

)2

(60)

−
∫ 1

0

(
E (x̃|Φi)− PS − τ−1Z̃µiV ar (µ̃|Φi)

PD + V ar (µ̃|Φi)

)2

di


=

(
τ

PD + V ar (µ̃|Φi)

)2 [(
E (x̃|Φi)− PS − τ−1Z̃µiV ar (µ̃|Φi)

)2

−
∫ 1

0

(
E (x̃|Φi)− PS − τ−1Z̃µiV ar (µ̃|Φi)

)2

di

]
.

Thus, V olD is affected by Ṽ , υ̃, and z̃V through PD. DefineBi ≡
(
E (x̃|Φi)− PS − τ−1Z̃µiV ar (µ̃|Φi)

)2

−∫ 1

0

(
E (x̃|Φi)− PS − τ−1Z̃µiV ar (µ̃|Φi)

)2

di, Ψ ≡ τ
2

(PD + V ar (µ̃|Φi))
2, and Y = τk1 (a) ẽi+

(τk3 (a)− 1) z̃V i. Note we can write:

dV olD
dPD

=
d

dPD

∫ 1

0

∣∣∣∣Y +
Bi

Ψ

∣∣∣∣ di. (61)

Applying a similar technique as in the proof of Corollary 2, it can be seen that Bi is not
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affected by PD. Furthermore, it is clearly the case that ∂Ψ
∂PD

> 0. Therefore,

d

dPD

∫ 1

0

∣∣∣∣Y +
Bi

Ψ

∣∣∣∣ di (62)

=
∂Ψ

∂PD

∂

∂Ψ

∫ 1

0

∣∣∣∣Y +
Bi

Ψ

∣∣∣∣ di
∝ ∂

∂Ψ

∫ 1

0

∣∣∣∣Y +
Bi

Ψ

∣∣∣∣ di.
Simplifying,

∂

∂Ψ

∫ 1

0

∣∣∣∣Y +
Bi

Ψ

∣∣∣∣ di (63)

=
∂

∂Ψ

∫ ∞
−∞

∫ ∞
−∞

∣∣∣∣Y +
Bi

Ψ

∣∣∣∣ dFBidFY
=

∂

∂Ψ

∫ ∞
−∞

[∫ ∞
−ΨY

(
Y +

Bi

Ψ

)
dFBi −

∫ −ΨY

−∞

(
Y +

Bi

Ψ

)
dFBi

]
dFY

= − 1

Ψ2

∫ ∞
−∞

[∫ ∞
−ΨY

BidFBi −
∫ −ΨY

−∞
BidFBi

]
dFY .

Note that
∫ 1

0
Bidi = 0, such that:

∫ ∞
−ΨY

BidFBi +

∫ −ΨY

−∞
BidFBi = 0 (64)

=⇒
∫ ∞
−ΨY

BidFBi = −
∫ −ΨY

−∞
BidFBi

=⇒
∫ ∞
−ΨY

BidFBi −
∫ −ΨY

−∞
BidFBi = −2

∫ −ΨY

−∞
BidFBi .

We thus have:

− 1

Ψ2

∫ ∞
−∞

[∫ ∞
−ΨY

BidFBi −
∫ −ΨY

−∞
BidFBi

]
dFY (65)

=
2

Ψ2

∫ ∞
−∞

∫ −ΨY

−∞
BidFBidFY < 0

since
∫ −ΨY

−∞ BidFBi <
∫∞
−∞BidFBi = E (Bi) = 0. Again applying the chain rule and the fact
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that PD increases in Ṽ and υ̃ and declines in z̃V completes the proof.

Proof of Corollary 4. The proof follows by considering the directional effect of a change

in each of the random parameters of the model, z̃µ, z̃V , Ṽ , and µ̃, on ∆PS, ∆PD, V olS, and

V olD. By examining the comparative statics that are implied by the results of propositions

1, 2, and 4, we find that any change in the underlying random variables that causes the

stock price to increase causes volume in both markets to either remain constant or increase.

Likewise, any change in an underlying random variable that causes the derivative price to

increase leads volume in both markets to remain constant or decrease.

Proof of Proposition 5.

The proof is an application of the implicit-function theorem to the equilibrium condition

h
(
PD; l̃

)
= 0. Since

∂h(PD;l̃)
∂PD

> 0,

dPD
dBeliefDispersion

(66)

∝ −
∂h
(
PD; l̃

)
∂
∫ 1

0
D2
Sidi

∂
∫ 1

0
D2
Sidi

BeliefDispersion
.

From the proof of Corollary 2, we have that:

∫ 1

0

D2
Sidi (67)

=

(
1

PD + V ar (µ̃|Φi)

)2 ∫ 1

0

[
τ

(
E (x̃|Φi)−

∫ 1

0

E (x̃|Φi) di

)
− z̃µiV ar (µ̃|Φi)

]2

di+ z̄2

=

(
τ

PD + V ar (µ̃|Φi)

)2 [
BeliefDispersion−

∫ 1

0

(z̃µiV ar (µ̃|Φi))
2 di

]
+ z̄2,

which clearly increases in BeliefDispersion. Now, given that
∂h(PD;l̃)
∂
∫ 1
0 D

2
Sidi

< 0, dPD
dBeliefDispersion

is positive. Next, note that:

E (PS) = E

[∫ 1

0

E (x̃|Φi) di−
1

τ
z̃µV ar (µ̃|Φi)−

1

τ
z̄ (PD + V ar (µ̃|Φi))

]
(68)

= E (x̃)− 1

τ
z̄ (E (PD) + V ar (µ̃|Φi)) .
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Hence, an increase in BeliefDispersion that leaves V ar (µ̃|Φi) unchanged only affects

E (PS) through PD; given that PD increases in BeliefDispersion, E (PS) decreases in

BeliefDispersion.

Proof of Proposition 6. i) This follows from the proof of Proposition 5.

ii) Letting PD =
∫ 1

0
E
(
Ṽ |Φi

)
di+ V RP , the proof follows by replicating the proof of Corol-

lary 3 holding fixed
∫ 1

0
E
(
Ṽ |Φi

)
di.

iii) This follows from an examination of expression (5).
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