

JACOBS LEVY EQUITY MANAGEMENT CENTER FOR QUANTITATIVE FINANCIAL RESEARCH

Carry

Ralph S.J. Koijen, London Business School and NBER Tobias J. Moskowitz, Chicago Booth and NBER Lasse H. Pedersen, NYU, CBS, AQR Capital Management, CEPR, NBER Evert B. Vrugt, VU University, PGO-IM

Motivation	Understanding Carry	Data	Carry Predictability	Economic Drivers of Carry	Conclusion
The C	oncept of Ca	rry			

- Concept of carry almost exclusively applied to currencies
 - Carry = interest rate differential
 - Main findings:
 - Uncovered interest-rate parity (UIP) fails
 - Carry trade earns significant risk-adjusted returns
 - Negative skewness reflecting large sudden crashes
 - Substantial exposure to liquidity and volatility risks
- We generalize the concept of carry to any asset

Carry = "Return you earn if market conditions stay constant"

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへぐ

- Carry = "Return you earn if market conditions stay constant"
- Carry and returns:

 $return = \underbrace{carry + E(price appreciation)}_{expected return} + unexpected price shock.$

Carry is a characteristic of any asset that is *directly observable*

- Key research questions
 - Does a generalized pan-asset-class version of UIP/EH hold?
 - O expected returns vary over time and across assets?
 - How can expected returns be estimated ex ante?
 - What drives expected returns?

Motivation	Understanding Carry	Data	Carry Predictability	Economic Drivers of Carry	Conclusion
What	We Do				

- Apply the general definition of carry across asset classes
- We test the key research questions in global markets
 - global equities
 - global bonds
 - global slope trades
 - commodities
 - US Treasuries across maturities
 - credit markets
 - options
- Methodology
 - Regression tests
 - Portfolio tests: carry trades

• Study the source of risk: crash, macro, liquidity, and volatility risks

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Motivation

Data

Carry Predictability

Main Results: Care About Carry

- Sarry predicts returns in each major asset class we study
 - Significant regressions; coefficient $\leqslant 1$ depending on asset class
 - ${\ensuremath{\, \bullet }}$ Sharpe ratio of Diversified Carry Factor = 1.1
 - Strong rejection of generalized UIP/EH in favor of models of varying risk premia
- Potential underlying drivers
 - Not crash risk: limited skewness and kurtosis
 - Exposure to liquidity risk
 - Exposure to volatility risk
 - Drawdowns during recessions
- Carry unifies and extends
 - Unified framework related to known predictors studied separately, one asset class at a time
 - Generates new predictors not studied before

 \Rightarrow most finance models have direct implications for carry strategies and hence a useful new set of moments to calibrate models to

Motivation	Understanding Carry	Data	Carry Predictability	Economic Drivers of Carry	Conclusion
-					

Overview of the Rest of Talk

• Understanding carry: what is equity carry, bond carry, etc.?

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- Data
- Carry predictability: regression tests and carry trades
- Economic drivers of carry

Motivation Understanding Carry Data Carry Predictability Economic Drivers of Carry Conclusion

Defining Carry in Futures Markets

• The (excess) return on a fully-collateralized futures contract equals:

$$r_{t+1} = \frac{S_{t+1} - F_t}{F_t}$$

where S_t is the spot price and F_t the one-month futures price

• Carry is the return you earn if prices stay constant, i.e., $S_{t+1} = S_t$:

$$C_t = \frac{S_t - F_t}{F_t}$$

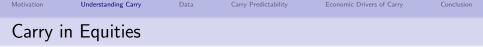
• We can write the (excess) return as:

$$r_{t+1} = \frac{S_{t+1} - F_t}{F_t} = \underbrace{C_t + \frac{E_t (\Delta S_{t+1})}{F_t}}_{E_t (r_{t+1})} + u_{t+1}$$

・ロト・日本・日本・日本・日本・今日・

• We apply this definition in every asset class

Motivation Understanding Carry Data Carry Predictability Economic Drivers of Carry


Carry in Currencies: Familiar Territory

• The currency carry equals, using $F_t = S_t (1 + r_t^f) / (1 + r_t^{f*})$:

$$C_t := \frac{S_t - F_t}{F_t}$$
$$\propto r_t^{f*} - r_t^f$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

• The difference between the foreign and domestic interest rate – as usual

• The equity carry equals, using $F_t = S_t(1 + r_t^f) - E_t^Q(D_{t+1})$,:

$$C_t \propto \frac{E_t^Q \left(D_{t+1} \right)}{S_t} - r_t^f,$$

- The difference between the exp. dividend yield and the local r^f
- Consider the Gordon Growth Model for equity prices S_t :

$$S = \frac{D}{E(R) - g}$$

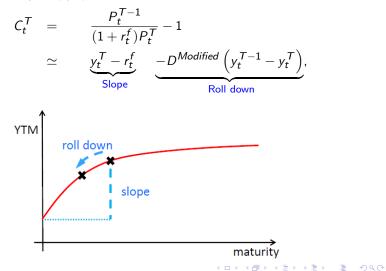
suggesting a link between expected excess returns and carry

$$E(R) - r^f = \frac{D}{S} - r^f + g$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Motivation	on Understanding Carry		Carry Predictability	Economic Drivers of Carry	Conclusion
Carry ir	n Commodit	ies			

- Commodity futures prices depend on δ_t the convenience yield, $F_t = S_t (1 + r_t^f \delta_t)$
- The commodity carry equals:


$$C_t \propto \delta - r_t^f$$
,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

the difference between the convenience yield and the risk-free rate

Carry in Fixed Income

• The carry of a *T*-year bond with $S_t = P_t^{T-1} = 1/(1+y_t^{T-1})^{T-1}$ and $F_t = (1+r_t^f)P_t^T$ is:

Motivation	Understanding Carry	Data	Carry Predictability	Economic Drivers of Carry	Conclusion
Carry in	Slope Trad	es			

• The carry of a *T*-year bond with $S_t = P_t^{T-1} = 1/(1+y_t^{T-1})^{T-1}$ and $F_t = (1+r_t^f)P_t^T$ is:

$$C_t^T = \frac{P_t^{T-1}}{(1+r_t^f)P_t^T} - 1$$

$$\simeq \underbrace{y_t^T - r_t^f}_{\text{Slope}} \underbrace{-D^{Modified}\left(y_t^{T-1} - y_t^T\right)}_{\text{Roll down}},$$

• We also apply the same concept to the slope of the the term structure across markets:

$$C_t = C_t^{T_1} - C_t^{T_2},$$

where $T_1 > T_2$. Carry determined by two roll-down components and the yield difference between T_1 and T_2

Motivation	Understanding Carry	Data	Carry Predictability	Economic Drivers of Carry	Conclusion
6	-		P. M. L		

Carry in Treasury and Credit Markets

- We can apply this definition to both Treasuries and corporate bonds
- Carry of longer maturities "mechanically" higher and more volatile due to differences in duration
- We adjust the carry definition to make it duration neutral:

$$C_t^{\text{duration-adjusted},i} = \frac{C_t'}{D_t^i}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

• Strategies also work for non-adjusted carry

Motivation	Understanding Carry	Data	Carry Predictability	Economic Drivers of Carry	Conclusion
Carry ir	n Options M	arkets			

- Start from the price of an option, $F_t^j(S_{it}, K, T, \sigma_T)$, j = Call, Put
- The option carry is defined as before:

$$C_{it}^{j}(K, T, \sigma_{T}) = \frac{F_{t}^{j}(S_{it}, K, T-1, \sigma_{T-1})}{F_{t}^{j}(S_{it}, K, T, \sigma_{T})} - 1$$

• Using linear approximations, we get:

$$C_{it}^{j}(K, T, \sigma_{T}) \simeq \frac{-\theta_{t}^{j}(S_{it}, K, T, \sigma_{T}) + \nu_{t}^{j}(S_{it}, K, T, \sigma_{T})(\sigma_{T-1} - \sigma_{T})}{F_{t}^{j}(S_{it}, K, T, \sigma_{T})}$$

- \Rightarrow Carry depends on the option's
 - theta $\theta_t^j = -\frac{\partial F}{\partial \tau}$ and
 - volatility "roll-down" $\sigma_{T-1} \sigma_T$ scaled by vega $\nu_t^j = \frac{\partial F}{\partial \sigma}$

Motivation

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへで

Data Overview: Global Markets

• Equity index data from 13 countries

US, Canada, UK, France, Germany, Spain, Italy, Netherlands, Norway, Switzerland, Japan, Hong Kong, Australia

• Currency data for 20 countries

Australia, Austria, Belgium, Canada, Denmark, France, Germany, Ireland, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, UK, Euro, US

• Data on 24 commodities

Aluminium, Copper, Nickel, Zinc, Lead, Gold, Silver, Crude Oil, Gasoil, WTI Crude, Unleaded Gasoline, Heating Oil, Natural Gas, Cotton, Coffee, Cocoa, Sugar, Soybeans, Kansas Wheat, Corn, Wheat, Lean Hogs, Feeder Cattle, Live Cattle

• Fixed income data for 10 countries

Australia, Canada, Germany, UK, Japan, New Zealand, Norway, Sweden, Switzerland, US

 \Rightarrow For all asset classes, we have more than 20 years of data

Data Overview: Global Markets, Continued

- Treasuries:
 - $\bullet\,$ 6 portfolios of US Treasuries sorted by maturity starting in 1971
 - Maturities: 1-12, 13-24, 25-36, 37-48, 49-60, and 61-120 months
- Credit portfolios:
 - 8 portfolios of corporate bonds from Barclays that vary by credit quality (AAA, AA, A, and BAA) and maturity (int. and long)
 - Sample starts in 1973
- Index options
 - Dow Jones Industrial Average, NASDAQ 100 Index, CBOE Mini-NDX Index, AMEX Major Market Index, S&P500 Index, S&P100 Index, S&P Midcap 400 Index, S&P Smallcap 600 Index, Russell 2000 Index, PSE Wilshire Smallcap Index
 - Consider two delta groups, $|\Delta| \in [0.2\text{-}0.4]$ or $|\Delta| \in [0.4\text{-}0.6]$, and maturities between 1 and 2 months starting in 1996
 - Implement the carry strategies separately for call and put options

Motivation	Understanding Carry	Data	Carry Predictability	Economic Drivers of Carry	Conclusion
Data S	Sources				

- Bloomberg: Futures and spot prices for
 - Global equities
 - Global fixed income (Jonathan Wright for earlier sample)
 - Commodities
- Datastream:
 - Currency forward and spot exchange rates
 - Duration, yields, and returns for credit portfolios
- OptionMetrics:
 - Index options and implied volatilities by maturity and moneyness

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

- CRSP:
 - Maturity and returns for Treasuries portfolios
- Gürkaynak, Sack, and Wright:
 - Yields for Treasuries portfolios
- ECRI:
 - Business cycle data following the NBER methodology

Motivation	Understanding Carry	Data	Carry Predictability	Economic Drivers of Carry	Conclusion
Carry	Dradiatability	. Dart	falia Taata		

Carry Predictability: Portfolio Tests

• Our carry trade portfolio weights

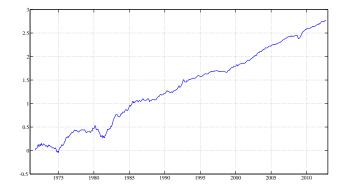
$$w_t^i = z_t \left(\mathsf{rank}(C_t^i) - rac{N_t + 1}{2}
ight)$$
 ,

- Linear in the rank of the carry
- Invests a dollar long and short each period
- We consider two versions of the carry strategy:
 - "Current carry": uses the current, 1-month carry
 - "Carry1-12": uses the 12-month moving average of the current carry to remove seasonal effects

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Motivation

Global Carry Trade Returns


Asset class	Strategy	Mean	Stdev	Skewness	Kurtosis	Sharpe ratio
Global equities	Carry	9.14	10.42	0.22	4.74	0.88
Giobal equities	EW	5.00	10.42 15.72	-0.63	3.91	0.88
	E. W	5.00	15.72	-0.05	5.91	0.32
Fixed income 10Y global	Carry	3.85	7.45	-0.43	6.66	0.52
5	EW	5.04	6.85	-0.11	3.70	0.74
Fixed income 10Y-2Y global	Carry	3.77	5.72	-0.22	5.49	0.66
Thed meetine for 21 global	EW	4.04	5.73	-0.05	3.67	0.71
	2	1.01	0.10	0.00	0.01	0.11
US Treasuries	Carry	0.46	0.67	0.47	10.46	0.68
	EW	0.69	1.22	0.58	12.38	0.57
Commodities	Carry	11.22	18.78	-0.40	4.55	0.60
	\mathbf{EW}	1.05	13.45	-0.71	6.32	0.08
Currencies	Carry	5.29	7.80	-0.68	4.46	0.68
	EW	2.88	8.10	-0.16	3.44	0.36
Credit	Carry	0.24	0.52	1.32	18.19	0.47
	\mathbf{EW}	0.37	1.09	-0.03	7.09	0.34
Options calls	Carry	64	172	-2.82	14.49	0.37
o puono cano	EW	-73	313	1.15	3.88	-0.23
	2		010	1.10	0.00	0.20
Options puts	Carry	179	99	-1.75	10.12	1.80
	EW	-299	296	1.94	7.11	-1.01
All asset classes (global carry factor)	Carry	6.75	6.12	-0.02	5.24	1.10
(Biobal carly factor)	EW	3.46	7.34	-0.38	7.94	0.47

500

2

• Strong performance of the global carry factor:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Regression Tests: Does the Market Take Back Part of the Carry?

• We start from:

$$r_{t+1} = \frac{S_{t+1} - F_t}{F_t} = \underbrace{C_t + \frac{E_t (\Delta S_{t+1})}{F_t}}_{E_t(r_{t+1})} + u_{t+1},$$

• To link expected returns to carry, we consider panel regressions of the form:

$$r_{t+1}^i = a^i + b_t + cC_t^i + \varepsilon_{i,t+1}$$

- We consider three cases:
 - Time fixed effects
 - Security fixed effects
 - Both time and security fixed effects
 - \Rightarrow Results even stronger if we use the rank of the carry instead

Regression Tests:

Does the Market Take Back Part of the Carry?

		Global Equities					Comn	nodities	
Slope current carry	1.48	1.21	1.53	1.25		0.05	0.05	-0.01	-0.01
<i>t</i> -stat	3.49	4.27	3.45	4.29		0.56	0.59	-0.06	-0.12
Slope carry 1-12	2.42	1.46	2.89	1.76		0.34	0.41	0.21	0.26
<i>t</i> -stat	3.48	2.82	3.49	2.83		2.87	3.35	1.58	1.94
Contract FE	No	No	Yes	Yes		No	No	Yes	Yes
Time FE	No	Yes	No	Yes		No	Yes	No	Yes
		Fixed	Income				Curr	encies	
Slope current carry	1.54	1.64	1.58	1.85		1.24	0.69	1.54	0.90
t-stat	2.64	3.78	2.25	3.63		3.56	2.70	3.03	2.60
Slope carry 1-12	1.52	1.05	1.56	1.03		1.14	0.53	1.48	0.61
<i>t</i> -stat	2.43	2.36	2.04	1.93		3.27	1.71	2.75	1.21
Contract FE	No	No	Yes	Yes		No	No	Yes	Yes
Time FE	No	Yes	No	Yes		No	Yes	No	Yes
						$\bullet \Box \bullet$	< 🗗 🔸 📢	ヨン・モヨ	▶ ― ―――

Motivation	Understanding Carry	Data	Carry Predictability	Economic Drivers of Carry	Conclusion
Risk E	xposures				

Common carry structure across markets

• Correlations across carry trade

What are the risk exposures that could help explain the return premium?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

- Value and momentum?
- Liquidity or volatility risk?
- Prolonged drawdowns during bad times

Motivation	Understanding Carry	Data	Carry Predictability	Economic Drivers of Carry	Conclusion
Carry	Correlations				

Correlations of carry trade returns across asset classes

	\mathbf{EQ}	FI 10Y	FI 10Y-2Y	Treasuries	COMM	\mathbf{FX}	Credit	Calls	Puts
EQ	1.00	0.17	0.13	0.07	-0.02	0.05	0.06	0.11	-0.09
FI 10Y		1.00	0.66	0.09	0.05	0.15	-0.02	-0.07	0.06
FI 10Y - 2Y			1.00	0.11	0.08	0.14	-0.08	0.00	0.09
Treasuries				1.00	0.12	-0.05	0.12	0.08	-0.06
COMM					1.00	0.02	0.04	-0.15	0.08
FX						1.00	0.21	-0.14	0.11
Credit							1.00	-0.04	0.09
Calls								1.00	0.15
Puts									1.00

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Motivation	Understanding Carry	Data	Carry Predictability	Economic Drivers of Carry	Conclusion
Carry vs	. Value and	l Mom	entum		

Carry different from value and momentum

- Momentum: One-year past returns
- Value: Current price relative to fundamental value (or 5-year past returns)
- Carry: Forward-looking return, assuming market conditions stay constant

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへぐ

Motivation

Data

arry Predictability

Economic Drivers of Carry

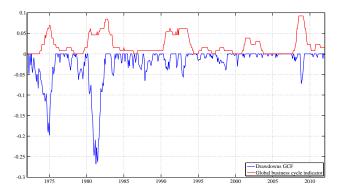
Conclusion

Risk-adjustment Performance and Exposures

	Equitie	s global	FI I	Level	FI S	lope	Treas	suries	Comn	nodities
α	0.79	0.77 (4.51)	(0.35)	0.33 (3.08)	0.34	0.29 (3.63)	0.03	(2.74)	0.93 (3.43)	(2.57)
Passive long	-0.06	-0.06	-0.07	-0.18	-0.07	-0.23	0.16	0.12	0.01	-0.02
Value	(-1.10)	(-1.16) 0.17	(-0.94)	(-2.10) 0.07	(-0.91)	(-3.03) 0.07	(2.57)	(3.51) 0.00	(0.12)	(-0.31) -0.21
Momentum		(1.84) 0.06		(0.51) 0.56		(0.64) 0.43		(-0.67) 0.00		(-2.96) 0.29
TSMOM		(0.74) -0.04		(4.26) 0.03		(4.37) 0.04		(0.04) 0.00		(3.81) -0.04
R^2	0.01	(-1.69) 0.03	0.00	(1.82) 0.16	0.00	(3.12) 0.20	0.08	(0.80) 0.07	0.00	(-0.45) 0.20
IR	0.91	0.90	0.57	0.61	0.71	0.70	0.54	0.64	0.60	0.47
	F	X	Cre	dits	Ca	alls	P	uts	G	CF
α	(3.31)	(2.31)	(2.85)	(1.70)	3.21 (1.07)	6.93 (2.15)	(4.74)	(4.55)	0.53 (6.52)	0.44
Passive long	(3.31) 0.17 (2.47)	0.22 (3.46)	(2.83) (0.02) (0.50)	(1.10) 0.14 (2.31)	-0.34	-0.35	-0.08 (-1.85)	-0.09 (-2.10)	(0.32) 0.10 (1.34)	0.14
Value	(2.47)	(3.46) 0.11 (1.08)	(0.50)	(2.31) 0.01 (0.81)	(-5.90)	(-0.07) -5.96 (-2.14)	(-1.65)	(-2.10) 2.82 (0.98)	(1.54)	(1.78) 0.08 (1.00)
Momentum		0.03		0.00		-4.32		2.14		0.10
TSMOM		(0.31) 0.01 (0.25)		(-0.21) 0.00 (-1.42)		(-2.54) -0.92 (-1.00)		(1.01) -0.77 (-1.07)		(1.45) -0.01 (-0.22)
R^2 IR	0.03	0.05	0.00	0.07	0.39	0.43	0.05	0.07	0.02	0.04

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q @

Motivation						

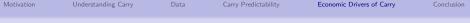

Exposures to Global Liquidity and Volatility Shocks

Asset class	Exposure liquidity shocks	T-stat.	Exposure volatility changes	T-stat.
	0.00	1.05	0.10	0.40
Equities	0.22	1.65	-0.12	-0.49
FI 10Y	0.28	1.44	-0.54	-2.25
FI $10Y-2Y$	0.32	1.65	-0.31	-1.19
Treasuries	-0.21	-0.80	0.54	2.92
Commodities	0.26	2.36	-0.42	-2.74
Currencies	0.88	3.62	-1.03	-6.46
Credit	1.24	3.78	-0.58	-2.05
Options calls	-0.03	-0.33	-0.10	-0.84
Options puts	0.57	2.48	-0.62	-2.00

Motivation

Carry Drawdowns and Recession Risk

Carry drawdowns: $D_t = \sum_{s=1}^t r_s - \max_{u \in \{1,...,t\}} \sum_{s=1}^u r_s$


Three major carry drawdowns:

- 1972.8 1975.9 (DD = -19.6%)
- 1980.3 1982.6 (DD = -26.8%)
- 2008.8 2009.2 (DD = -7.2%)

Carry Drawdowns: Returns per Asset Class

	_	Carry ex	cpansions	Carry drawdowns		
Asset class	Strategy	Mean	Stdev	Mean	Stdev	
Equities	Carry	15.03	9.71	-6.15	10.95	
	EW	8.31	13.73	-3.62	19.87	
FI global, 10Y	Carry	10.84	6.19	-13.90	7.93	
0 . /	EW	3.75	6.53	8.33	7.55	
FI global, 10Y-2Y	Carry	8.10	5.10	-7.25	5.98	
	EW	2.94	5.45	6.85	6.34	
Treasuries	Carry	0.97	0.64	-0.57	0.65	
	EW	0.98	1.14	0.10	1.34	
Commodities	Carry	21.49	17.33	-13.23	20.24	
	EW	4.54	11.73	-7.24	16.68	
Currencies	Carry	10.06	7.29	-6.81	8.00	
	EW	5.17	7.68	-2.95	8.89	
Credit	Carry	0.60	0.52	-0.50	0.45	
	EW	0.84	1.03	-0.61	1.15	
Options calls	Carry	152	138	-161	225	
-	EW	195	272	-237	389	
Options puts	Carry	258	77	-22	124	
	EW	364	238	132	409	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

Static and Dynamic Components of Carry Returns

Decompose expected return into static and dynamic components:

$$E\left(r_{t+1}^{\text{carry trade}}\right) = E\left(\sum_{i} w_{t}^{i} r_{t+1}^{i}\right)$$
$$= \sum_{i} E\left(w_{t}^{i}\right) E\left(r_{t+1}^{i}\right)$$
$$+ \sum_{i} E\left[\left(w_{t}^{i} - E\left(w_{t}^{i}\right)\right)\left(r_{t+1}^{i} - E\left(r_{t+1}^{i}\right)\right)\right]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Understanding Carry Data

Carry Predictability Economic Drivers of Carry

Static and Dynamic Components of Carry Returns

Individual securities	Static	Dynamic	% Dynamic
Equities global	-0.1%	9.3%	101%
Fixed income - 10Y global	0.6%	3.3%	86%
Fixed income - 10Y-2Y global	0.1%	3.7%	99%
US Treasuries	0.3%	0.2%	42%
Commodities	4.1%	7.1%	64%
Currencies	2.2%	3.1%	58%
Credit	0.2%	0.1%	30%
Options calls	-7.2%	70.8%	111%
Options puts	-0.4%	179.3%	100%
Regions and groups	Static	Dynamic	% Dynamic
Equities global	-0.6%	6.6%	111%
Fixed income - 10Y global	0.5%	3.3%	87%
Fixed income - 10Y–2Y global	0.2%	3.9%	96%
Commodities	-0.4%	15.4%	103%
Currencies	2.3%	2.4%	51%

Carry in the Time Series: Timing Strategies

Timing carry by going long/short based on carry (relative to zero)

Individual securities	mean	stdev	skewness	kurtosis	Sharpe ratio
Equities	7.40	18.55	0.39	4.49	0.40
FI global, 10Y	7.09	10.93	-0.16	4.05	0.65
FI global, $10Y-2Y$	6.90	9.62	-0.15	4.29	0.72
Treasuries	1.36	2.28	-0.48	14.51	0.60
Commodities	8.28	20.78	0.13	5.56	0.40
Currencies	7.86	10.08	-0.72	5.63	0.78
Credit	1.27	2.00	-0.24	8.00	0.64
Options calls	146.45	626.92	-1.15	3.88	0.23
Options puts	597.76	592.72	-1.94	7.11	1.01

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Motivation Understar	iding Carry Data	Carry Predictability	Economic Drivers of Carry	Conclusion
Conclusion				

- Carry is an important characteristic which is directly observable
- Carry predicts returns in every asset class
 - Broad rejection of UIP/EH
 - $\, \bullet \, E(R)$ varies over time and across assets as captured by carry
 - Strong performance of our Global Carry Factor
- Carry captures varying E(R) driven by
 - Recession risk in carry drawdowns
 - Liquidity risk
 - Volatility risk
 - Limited arbitrage and other effects future research

