

JACOBS LEVY EQUITY MANAGEMENT CENTER

Information Release and the Fit of the Fama-French Model

Thomas Gilbert Christopher Hrdlicka Avraham Kamara

Michael G. Foster School of Business University of Washington

April 25, 2014

Risk and Return Resolution at the Casino

► Returns occur when risk is resolved

Risk and Return Resolution in Financial Markets

- ► Financial markets operate similarly, but with positive expected returns
- Returns accrue unevenly throughout the year
- ▶ Big price and return movements on information events
 - ► Earnings announcements (Beaver 1968)
 - ▶ Dividend announcements (Kalay and Lowenstein 1985)
 - ► Macro announcement days (Savor and Wilson 2013)
 - ► Firm specific events, e.g., mergers announcements
- ► Traditional models treat returns as earned uniformly
- ► We show how lumpy information releases affect
 - Return patterns
 - ► How we properly measure risk

Overview

Model of lumpy information release:

- ► Two types of announcers: early and late
- ▶ No difference in risk
 - Assume same terminal cash flow distribution
 - ► Endogenously earn the same expected return
- ► CAPM supplemented with early-minus-late factor prices assets
- ► Alpha reduction primarily in early announcement period

Empirical Results:

- Systematic differences in earnings announcement timing
- ► Fama French 3-factor model improvement concentrated in earnings announcement months
- ► Early v. late announcers have the same average returns
- ► Announcement timing affects SMB and HML exposure

Section 1

Model / Theory

Based on "Daily data is bad for beta: Opacity and Frequency-Dependent Betas" by Gilbert, Hrdlicka, Kalodimos, Siegel (RAPS 2014)

Model Setup

► Continuum of agents *j* with utility over terminal wealth

$$u[W_{j,T}] = -\exp[-\gamma W_{j,T}]$$

- ▶ Three trading dates 0, 1, 2 with consumption at 2
- ► *N* risky assets *i* that pay terminal cash flow

$$C_{i,T} = rac{1}{N} \left(ilde{b}_{i,1} ilde{f}_1 + ilde{b}_{i,2} ilde{f}_2
ight)$$

- $ightharpoonup \tilde{f}_{\tau}$ is an economy wide systematic shock (event or news)
- $ightharpoonup \tilde{b}_{i,t}$ is the asset specific exposure to the shock
- ► *M* early announcing firms and *N*-*M* are late announcing firms

Information Structure

$$C_{i,T} = \frac{1}{N} \left(\tilde{b}_{i,1} \tilde{f}_1 + \tilde{b}_{i,2} \tilde{f}_2 \right)$$

- Systematic shock \tilde{f}_{τ} revealed at each date
- ▶ Firm specific exposure $\tilde{b}_{i,\tau}$
 - lacktriangle Early announcers: revealed immediately at date au
 - ► Late announcers: revealed with a lag of one period
- ► Agents infer information about the late announcers' cash flows from the information released by early announcers
- ► Early and late announcers have same risk
 - Identical cash flow distributions
 - ► Endogenously identical expected returns

Model Results

Parameter choices

- ▶ Risk aversion $\gamma = 5$
- ▶ Number of sub-periods T = 3
- ► Fraction of early announcers is 60%
- $f^u = 1$ and $f^d = 0$ with $P_f^u = P_f^d = 0.5$
- ► $b^H = 1$ and $b^L = 0$ with $P_b^{'H} = P_b^{'L} = 0.5$

Average absolute alphas

	First Period	Second Period
CAPM	0.13	0.08
Market & Early-Late	0.00	0.00
Improvement	-0.13	-0.08

Model Intuition

- ▶ Betas
 - ► Late announcers have time-varying conditional risk
 - ► Resulting discount rate effect dampens covariance with market
 - ▶ Biases their beta down: $\beta_i = \beta_{i,true} + \text{error}$
- ► Expected market returns
 - ► More information released in first period
 - Expected market return is higher in first period
- ▶ Expected asset returns: $E[r_{i,t}] = \beta_{i,true} \times E[r_{mkt,t}]$
- ► Alphas
 - $\alpha_{i,t} = E[r_{i,t}] (\beta_{i,true} + error) \times E[r_{mkt,t}]$ $= error \times E[r_{mkt,t}]$
 - ▶ In first period, higher market return leads to higher alphas

Section 2

Earnings Announcements

Earnings Announcements by Month (1975-2012)

Announcement Patterns for Stocks by Characteristics

- ► Each quarter, each firm assigned label of month 1, month 2 or month 3 announcer
 - ► Assignment is based on the first announcement for that firm in a given quarter
 - ► Firm must have at least four announcements in the current year to be included
- ► Tabulate the fraction of the stocks within each of the 25 Fama French size and book-to-market sorted portfolios that announce in each month
 - ► Aggregate across all quarters

Announcement Patterns for Stocks by ME and BE/ME

Across ME per BE/ME quintile:

Across BE/ME per ME quintile:

Section 3

Alphas

Testing Asset Pricing Models

► Standard time series regression:

$$\begin{split} r_{i,t}^{\text{e}} &= \alpha_{i}^{\textit{CAPM}} + \beta_{\textit{rmrf},i} r_{\textit{rmrf},t}^{\text{e}} + \epsilon_{i,t} \\ r_{i,t}^{\text{e}} &= \alpha_{i}^{\textit{FF3M}} + \beta_{\textit{rmrf},i} r_{\textit{rmrf},t}^{\text{e}} + \beta_{\textit{smb},i} r_{\textit{smb},t} + \beta_{\textit{hml},i} r_{\textit{hml},t} + \epsilon_{i,t} \end{split}$$

► Alphas for each month:

$$\begin{split} r_{i,t}^{e} &= \alpha_{i,Jan}^{\textit{CAPM}} + \alpha_{i,Feb}^{\textit{CAPM}} + \ldots + \alpha_{i,Dec}^{\textit{CAPM}} + \beta_{\textit{rmrf},i} r_{\textit{rmrf},t}^{e} + \epsilon_{i,t} \\ r_{i,t}^{e} &= \alpha_{i,Jan}^{\textit{FF3M}} + \alpha_{i,Feb}^{\textit{FF3M}} + \ldots + \alpha_{i,Dec}^{\textit{FF3M}} + \beta_{\textit{rmrf},i} r_{\textit{rmrf},t}^{e} \\ &+ \beta_{\textit{smb},i} r_{\textit{smb},t} + \beta_{\textit{hml},i} r_{\textit{hml},t} + \epsilon_{i,t} \end{split}$$

Fit Statistics

- ► For each model: Mean absolute alpha per month *m*
 - $ightharpoonup i=1\dots N$ test assets

$$\frac{1}{N} \sum_{i} \left| \alpha_{i,m}^{model} \right|$$

► Across models: Difference in mean absolute alphas

$$\frac{1}{N} \sum_{i} \left| \alpha_{i,m}^{FF3M} \right| - \frac{1}{N} \sum_{i} \left| \alpha_{i,m}^{CAPM} \right|$$

► Monthly returns (1950-2010)

Mean Absolute Alphas using 30 FF Industry Portfolios

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		Totals
CAPM	0.66	0.46	0.39	0.53	0.42	0.52	0.52	0.38	0.50	0.72	0.49	0.50	JAJO	-0.42
FF3M	0.50	0.35	0.40	0.55	0.42	0.54	0.43	0.42	0.50	0.53	0.49	0.47	JFAJO	-0.53
Chng	-0.16	-0.11	0.02	0.01	-0.00	0.02	-0.09	0.04	-0.01	-0.19	-0.00	-0.04	All	-0.51

- ▶ 82% of improvement occurs in Jan-Apr-Jul-Oct
- ► No/small improvements in other months except Feb
- ► Expectation is 33% improvement in 4 random months
- Standard errors generated by bootstrapping

Mean Absolute Alphas using 25 FF Portfolios

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		Totals
CAPM	1.60	0.58	0.38	0.40	0.14	0.20	0.45	0.28	0.31	0.88	0.32	0.37	JAJO	-2.20
FF3M	0.52	0.23	0.20	0.15	0.14	0.20	0.27	0.20	0.19	0.17	0.31	0.23	JFAJO	-2.54
Chng	-1.07	-0.35	-0.19	-0.24	0.00	0.00	-0.18	-0.08	-0.12	-0.70	-0.01	-0.14	All	-3.08

- ▶ 71% of improvement occurs in Jan-Apr-Jul-Oct
- Assess effect of each factor by looking at FF2M
 - ► SMB is main driver of improvement in Jan and Oct
 - ► HML is main driver of improvement in Apr and Jul

What Does Not Drive The Improved Fit

- ► Monthly conditional betas
 - ► Monthly dummies interacted with market returns
 - ► No overall improvement
 - ► Consistent with Lewellen and Nagel (2006)
- ► Extremely bad returns in reporting months (e.g., October)
 - ► Censor worst 10, 20, or 30 returns
 - Overall improvement and monthly concentration unchanged

Section 4

Expected Returns

Factor Returns

- Average return for each month of the quarter
 - ► E.g., Month 1 is average of Jan, Apr, Jul, Oct

	RMRF	SMB	HML
Month 1	0.75	0.06	0.76
Month 2	0.61	0.22	0.17
Month 3	0.42	0.25	0.20

- ► Market return is highest in first month
- ▶ SMB is highest when small firms tend to announce
- ► HML is highest when value firms tend to announce

Early v. Late Returns

- Classify firms by announcement month in each quarter
- ► Rebalance quarterly
- ► Calculate average return across all months

	Early	Late		
	Announcers	Announcers	Difference	t-stat
Equal Weighted	0.87	0.95	-0.08	-0.20
Value Weighted	0.51	0.60	-0.09	-0.29

- ► Early and late announcers have the same average returns
- ► Therefore early and late announcers have same riskiness
- ► Holds after controlling for risk by matching on FF size and book-to-market characteristics

Section 5

Risk Exposures and Announcement Timing

SMB and HML Beta Exposures

- SMB and HML exposures should vary based on when a firm announces
- Small stocks that announce early should have SMB exposures like big stocks
- ▶ Big stocks that announce late should have SMB exposures like small stocks
 - ► H1: SMB betas should increase across months within quarter
- Growth stocks that announce early should have HML exposures like value stocks
- ► Values stocks that announce late should have HML exposures like growth stocks
 - ► H2: HML betas should decrease across months within quarter

Methodology

- ► Each firm-year, calculate SMB and HML exposures using backward looking 60-month windows starting in December
- ► Triple sort stocks based on size, book-to-market and reporting month within each quarter to form portfolios
- ► Portfolio betas

SMB Beta Exposures

	Q	uarter	1		Q	uarter	2
	Mo. 1	Mo. 2	Mo. 3		Mo. 1	Mo. 2	Mo. 3
SL	1.43	1.32	1.46	SL	1.29	1.43	1.59
S2	1.24	1.41	1.18	S2	1.26	1.41	1.03
S3	0.91	1.23	1.16	S3	1.01	1.21	1.09
S4	0.99	1.00	1.03	S4	1.02	0.94	1.17
SH	1.09	1.02	1.12	SH	1.05	1.07	1.23
2L	0.91	0.92	1.03	2L	0.90	0.92	1.12
22	0.83	0.96	0.91	22	0.87	0.97	0.82
23	0.69	0.77	0.89	23	0.72	0.83	0.74
24	0.75	0.69	0.85	24	0.76	0.67	0.83
2H	0.75	0.85	0.90	2H	0.82	0.82	0.83
3L	0.87	0.61	0.67	3L	0.80	0.54	0.66
32	0.48	0.51	0.67	32	0.48	0.57	0.59
33	0.40	0.44	0.57	33	0.39	0.43	0.73
34	0.32	0.40	0.64	34	0.39	0.36	0.52
3H	0.49	0.49	0.66	3H	0.50	0.52	0.61
4L	0.46	0.44	0.38	4L	0.44	0.48	0.17
42	0.24	0.31	0.22	42	0.22	0.32	0.28
43	0.20	0.15	0.25	43	0.19	0.15	0.37
44	0.17	0.08	0.74	44	0.09	0.26	0.84
4H	0.14	0.24	0.27	4H	0.20	0.24	0.59
BL	-0.31	-0.23	0.16	BL	-0.31	-0.10	0.12
В2	-0.28	-0.20	-0.08	B2	-0.26	-0.10	-0.24
В3	-0.26	-0.16	-0.11	B3	-0.25	-0.05	-0.25
В4	-0.19	-0.13	-0.07	В4	-0.17	-0.09	-0.16
BH	-0.28	0.06	0.09	BH	-0.11	0.01	-0.35

	Q	uarter	3
	Mo. 1	Mo. 2	Mo. 3
SL	1.38	1.29	0.99
S2	1.28	1.41	1.01
S3	1.02	1.29	1.22
S4	1.02	1.01	1.10
SH	1.04	1.08	1.31
2L	0.88	1.04	0.98
22	0.85	1.08	0.94
23	0.73	0.81	0.80
24	0.77	0.78	0.72
2H	0.86	0.78	0.85
3L	0.75	0.66	0.64
32	0.50	0.59	0.75
33	0.40	0.56	0.51
34	0.41	0.37	0.44
ЗН	0.48	0.59	0.47
4L	0.44	0.57	0.06
42	0.20	0.40	0.41
43	0.21	0.11	0.49
44	0.15	0.14	0.93
4H	0.21	0.20	0.49
$_{\mathrm{BL}}$	-0.32	-0.11	0.18
B2	-0.27	-0.10	-0.37
В3	-0.24	-0.01	-0.18
В4	-0.15	-0.05	-0.16
BH	-0.08	-0.21	0.35

Quarter 3

	Q	uarter	4
	Mo. 1	Mo. 2	Mo. 3
SL	1.24	1.48	1.20
S2	1.24	1.48	1.02
S3	1.05	1.19	1.15
S4	0.98	1.08	1.18
SH	1.02	1.09	1.34
2L	0.86	1.01	0.90
22	0.86	1.01	1.07
23	0.74	0.79	0.79
24	0.73	0.88	0.83
2Н	0.84	0.77	0.96
3L	0.77	0.54	0.53
32	0.54	0.46	0.89
33	0.41	0.44	0.62
34	0.38	0.48	0.48
3Н	0.51	0.57	0.72
4L	0.43	0.58	0.56
42	0.22	0.22	0.52
43	0.20	0.19	0.37
44	0.12	0.26	0.84
4H	0.18	0.25	0.82
$_{\rm BL}$	-0.33	-0.08	0.13
В2	-0.26	-0.06	-0.32
В3	-0.25	-0.06	-0.09
В4	-0.16	-0.11	0.14
BH	-0.08	-0.16	0.53

HML Beta Exposures

	Q	uarter	1
	Mo. 1	Mo. 2	Mo. 3
SL	-0.38	-0.40	-0.19
S2	0.02	-0.08	0.14
S3	0.37	0.21	0.31
S4	0.49	0.46	0.50
SH	0.78	0.73	0.66
2L	-0.43	-0.42	-0.34
22	0.18	0.08	0.17
23	0.43	0.37	0.37
24	0.59	0.55	0.60
2H	0.84	0.88	0.96
3L	-0.37	-0.42	-0.28
32	0.20	0.24	0.20
33	0.49	0.47	0.48
34	0.65	0.61	0.68
3Н	0.91	0.73	0.75
4L	-0.44	-0.39	-0.22
42	0.30	0.18	0.02
43	0.56	0.50	0.28
44	0.66	0.58	0.18
4H	1.01	0.84	1.05
BL	-0.33	-0.38	-0.44
В2	0.15	0.12	0.34
В3	0.31	0.30	0.44
В4	0.75	0.67	0.20
BH	0.77	0.86	0.49

	Q	uarter	2
	Mo. 1	Mo. 2	Mo. 3
SL	-0.39	-0.31	-0.27
S2	0.02	-0.07	0.22
S3	0.36	0.18	0.18
S4	0.49	0.50	0.32
SH	0.75	0.71	0.70
2L	-0.45	-0.41	-0.29
22	0.16	0.09	0.19
23	0.40	0.44	0.36
24	0.60	0.58	0.45
2H	0.87	0.92	0.64
3L	-0.44	-0.34	-0.37
32	0.23	0.13	0.28
33	0.49	0.49	0.50
34	0.64	0.68	0.30
3Н	0.78	0.88	0.60
4L	-0.39	-0.46	-0.28
42	0.30	0.09	-0.23
43	0.53	0.43	0.44
44	0.65	0.54	0.15
4H	0.92	0.79	0.92
BL	-0.32	-0.42	-0.52
B2	0.17	0.12	0.03
B3	0.31	0.32	0.39
В4	0.76	0.50	0.06
BH	0.91	0.59	0.51

	Q	uarter	3
	Mo. 1	Mo. 2	Mo. 3
SL	-0.40	-0.28	-0.13
S2	0.03	-0.09	0.25
S3	0.33	0.17	0.20
S4	0.46	0.47	0.44
SH	0.73	0.70	0.68
2L	-0.46	-0.26	-0.42
22	0.19	0.03	0.15
23	0.43	0.39	0.26
24	0.62	0.52	0.43
2H	0.86	0.90	0.64
3L	-0.44	-0.37	-0.28
32	0.22	0.14	0.21
33	0.48	0.46	0.55
34	0.68	0.66	0.50
ЗН	0.78	0.80	0.61
4L	-0.38	-0.44	-0.36
42	0.30	0.11	0.15
43	0.58	0.37	0.38
44	0.65	0.51	0.20
4H	0.93	0.90	0.96
$_{\rm BL}$	-0.32	-0.38	-0.64
B2	0.18	-0.04	0.02
B3	0.32	0.25	0.24
В4	0.76	0.55	0.12
BH	0.92	0.47	0.57

	Q	uarter	4
	Mo. 1	Mo. 2	Mo. 3
SL	-0.41	-0.24	-0.37
S2	0.01	-0.09	0.24
S3	0.32	0.14	0.33
S4	0.46	0.50	0.32
SH	0.73	0.70	0.68
2L	-0.47	-0.33	-0.38
22	0.15	0.11	0.10
23	0.41	0.41	0.40
24	0.61	0.53	0.41
2Н	0.85	0.92	0.79
3L	-0.45	-0.33	-0.20
32	0.23	0.16	0.09
33	0.47	0.54	0.36
34	0.67	0.62	0.54
ЗН	0.77	0.85	0.93
4L	-0.41	-0.39	-0.39
42	0.30	0.19	-0.17
43	0.55	0.33	0.43
44	0.63	0.55	0.19
4H	0.91	0.83	0.89
$_{\rm BL}$	-0.32	-0.42	-0.64
В2	0.15	0.16	-0.08
В3	0.30	0.37	0.04
В4	0.76	0.51	0.51
BH	0.92	0.47	0.57

Conclusion

- ► Model: Lumpy information release
 - ► Creates a factor structure in returns
 - Even among equally risky firm
- Evidence:
 - Fama-French 3-factor model reduces alphas mainly in key earnings announcement months
 - ► Big firms announce before small firm
 - Value firms announce before growth firms
 - ► Early and late announcing firms have same risk
 - ► SMB and HML exposures vary with announcement timing
- ▶ Conclusion:
 - ► Information structure and risk jointly determine factor structure
 - Explanations of SMB and HML must match these seasonality
 - We show how characteristics can generate covariances