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Abstract

A key result from contract theory, the informativeness principle, is often vi-

olated in practice. We demonstrate an important cost of increasing informative-

ness: reduced incentives. We study a standard agency model with risk-neutrality

and limited liability (as in Innes (1990)), where the optimal contract is a call op-

tion. The direct effect of reducing signal volatility —for example, by filtering out

luck —is a fall in the value of the option and thus the agent’s rents, benefiting the

principal. We identify a second indirect effect: if the optimal strike price is not

too far in-the-money, the agent can only beat the strike price if he exerts effort

and there is a high noise realization. Thus, a fall in volatility weakens effort in-

centives. As the target performance level rises, the gains from increased precision

fall towards zero. Our model offers a potential justification for pay-for-luck and

the absence of relative performance evaluation.
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A major result in contract theory is the informativeness principle (Holmstrom

(1979), Shavell (1979), Gjesdal (1982), Grossman and Hart (1983), Kim (1995)).1 Ac-

cording to this principle, designers of contracts (such as managers, boards of directors,

or regulators) should maximize the precision of the overall vector of performance mea-

sures used to evaluate the agent. In turn, maximizing precision involves incorporating

all informative signals, and filtering out irrelevant noise such as industry or market

shocks that are outside the agent’s control. However, numerous violations of the latter

have been found in practice. Aggarwal and Samwick (1999) and Murphy (1999) find

that CEO pay is determined only by absolute performance, rather than performance

relative to industry peers, and thus affected by industry shocks. Jenter and Kanaan

(2013) similarly find an absence of relative performance evaluation (“RPE”) in CEO

firing decisions. Bertrand and Mullainathan (2001) find that CEOs are paid for “luck”,

i.e. positive exogenous shocks, and that such practices are particularly strong among

firms with weak governance, consistent with the view that they are ineffi cient. Indeed,

Bebchuk and Fried (2004) argue that the absence of RPE is a key piece of evidence

that CEO compensation is not determined by effi cient contracting by shareholders, and

instead results from rent extraction by CEOs.

This paper reaches a different conclusion. Traditional arguments in favor of signal

precision focus on the fact that a reduction in noise will reduce the risk borne by

the agent, and thus the cost of compensation. We analyze an important additional

effect that has been largely ignored: an increase in informativeness may weaken the

agent’s incentives, thus increasing the cost of compensation required to induce effort

from the agent and offsetting the first benefit. Taking into account this second effect

can lead to quite different conclusions on the benefits of increasing informativeness. It

can reduce the net benefit of augmenting precision suffi ciently strongly to make it no

longer worthwhile for the principal to bear the cost of doing so. In other situations,

the increase in informativeness may strengthen incentives and reinforce the first effect,

now rendering it optimal to pay the cost of reducing signal volatility.

1Shavell (1979) shows that additional information on the agent’s effort has positive value. Gjesdal
(1982) and Grossman and Hart (1983) show that if the information structure A is suffi cient for the
information structure B in the sense of Blackwell, then A is associated with a lower agency cost than
B. Holmstrom (1979) shows that any signal which is informative about the agent’s action will be
included in the contract. Lastly, Kim (1995) shows that the information structure A is more effi cient
than B if the cumulative distribution function of the likelihood ratio under A is a mean-preserving
spread of the one under B.
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We consider a standard model of moral hazard under risk neutrality and limited

liability, similar to Innes (1990). As shown by Innes (1990), the optimal contract

involves giving the agent a call option. A fall in the strike price increases the option’s

delta and thus the agent’s effort incentives, but also augments the value of the option

and thus his rents. Thus, the strike price is chosen to be the minimum possible to

satisfy the agent’s incentive constraint.

We analyze the effect of increasing the precision of the signal on which the option

is based. Increased precision has several interpretations. First, it can refer to holding

constant the choice of signal and improving the monitoring technology. For example,

if a supervisor is monitoring a worker through performance reports, an increase in

signal precision corresponds to paying the cost of more accurate reports. Second, it

can refer to replacing the signal with a more precise one. In Innes (1990), the call

option is on the firm’s (absolute) profits, but the principal may be able to use other

performance measures to evaluate the agent. For example, she can pay a cost to

filter out industry shocks from the performance signal, and instead give the agent a

call option on industry-adjusted performance. Effectively, such relative performance

evaluation increases the informativeness, and reduces the volatility, of the performance

signal.

Regardless of the interpretation, the reduction in volatility in turn has two effects.

First, it reduces the value of the option and thus the agent’s rents. This is the standard

benefit of increased informativeness which is traditionally focused on by advocates of

RPE. Our main contribution is to analyze a second effect —the reduction in volatility

changes the agent’s incentives. This effect is often ignored by standard analyses, that

do not consider the agent’s incentive constraint. Since the agent’s effort is unobserv-

able, he receives the call option regardless of whether he exerts effort. However, the

distribution of the signal underlying the option — and thus the value of the option

to him —depends on his effort decision. His incentives to exert effort stem from the

difference in value between two options —the (less valuable) option that he receives

when he shirks (“option-when-shirking”), and the (more valuable) option that he re-

ceives when he works (“option-when-working”). A fall in volatility increases the value

of both options, but to different degrees depending on their vega. Thus, the difference

in value between the two options will change, altering his incentives.

We first consider the case in which the cost of effort is high, i.e. the moral hazard

problem is severe. Then, if the principal pays the agent according to absolute per-
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formance, he will offer an agent an option with a low strike price, so that its delta is

suffi ciently large to balance the high cost of effort and induce working. Since the strike

price is low, the option-when-working will be deeply in-the-money, and the option-

when-shirking is closer to at-the-money. The vega of an option is highest when it is

at-the-money, and declines when the option moves in or out-of-the-money. Thus, the

vega of option-when-shirking is greater, and an increase in informativeness reduces its

value faster than the option-when-working. Overall, the fall in volatility increases the

agent’s incentives. Intuitively, when volatility is high, the agent’s effort incentives are

weak because, even if he shirked, he would still earn a high wage if he received a very

positive shock. Another way to view the intuition is that volatility is valuable to an

option holder since he benefits from the asymmetry of its payoff. This asymmetry is

strongest when the option is at-the-money; thus, when the strike price is low, the agent

benefits most from high volatility when he shirks, as he still receives the full upside of

positive shocks but is protected on the downside from suffi ciently negative shocks.

In sum, when incentives are strong to begin with, an increase in informativeness fur-

ther increases incentives, ceteris paribus. This reinforces the gains from informativeness

stemming from the first effect. Formally, since incentives have strengthened, the prin-

cipal can increase the strike price of the option without eroding the agent’s incentives.

This increase further reduces the option value and thus the cost of compensation.

We next consider a low cost of effort, where the optimal contract (without filtering)

involves a high strike price. Then, the option-when-shirking will be deeply out-of-the-

money, and the option-when-working will be closer to at-the-money. Thus, the vega of

the latter option is greater, and an increase in informativeness reduces the value of the

option-when-working faster than the option-when-shirking. Now, the fall in volatility

reduces the agent’s incentives. Intuitively, when the strike price is high, the agent will

only receive a positive wage if he exerts effort and also receives a suffi ciently positive

shock. When volatility falls, such shocks are less likely, and so the agent may not get

paid even if he does work. Thus, his effort incentives decline.

In sum, when incentives are weak to begin with, an increase in informativeness

further reduces incentives. This reduction forces the principal to lower the strike price

of the option to restore incentives, increasing the cost of compensation and partially

offsetting the first effect. Indeed, as incentives weaken and the strike price increases,

the net benefit of increased informativeness falls to zero. Thus, for suffi ciently weak

incentives, it becomes effi cient for the principal not to increase signal precision, e.g.
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to pay the agent for luck. Note that this result continues to hold even if the cost of

filtering out the shock is proportional to the original cost of compensation. Thus, when

the moral hazard problem is weak, leading to low incentives and compensation costs,

then even though it is cheaper to increase informativeness, the principal still chooses

not to do so.

At a general level, our analysis highlights the importance of considering the incentive

constraint when assessing the value of increased informativeness, as the total savings

in compensation can be substantially higher or substantially lower than the amounts

calculated when ignoring this constraint. At a detailed level, our analysis shows that

the benefits of increasing informativeness depend on the contracting setting. They are

lower for agents with weak incentives, such as rank-and-file employees, but higher for

agents with strong incentives, such as CEOs.

In addition to studying whether a firm should endogenously choose to increase

informativeness (at a cost), our analysis also investigates the impact of exogenous

changes in signal precision. An exogenous increase in the volatility of the signal (see

Gormley, Matsa, and Milbourn (2013) and DeAngelis, Grullon, and Michenaud (2013)

for natural experiments) will increase the effort incentives of agents with out-of-the-

money options, and reduce the effort incentives of firms with in-the-money options.

Thus, if firms recontract in response to these exogenous shocks, firms with in-the-money

options should increase their CEO’s incentives relative to firms with out-of-the-money

options, either by granting a greater number of additional options, reducing the strike

price at which additional options are granted, or reducing the strike price of existing

options.2

In a similar vein, since an improvement in informativeness increases (reduces) the

optimal strike price if the option was initially in-the-money (out-of-the-money), it over-

all leads the strike price to converge towards the initial stock price and thus for the

option to become closer to at-the-money. Thus, improvements in signal precision (e.g.

increases in stock market effi ciency over time) lead to at-the-money options being

optimal. Bebchuk and Fried (2004) argue that the almost universal practice of grant-

ing at-the-money options is suboptimal and that out-of-the-money options would be

cheaper for the firm, since the agent only gets paid if performance is very high. Such

2Acharya, John, and Sundaram (2000) also study the repricing of stock options theoretically,
although in response to changes in the mean rather than volatility of the signal. Brenner, Sundaram,
and Yermack (2000) analyze repricing empirically.
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an argument ignores the incentive effect: out-of-the-money options have lower deltas

and thus may provide the agent with insuffi cient incentives. Murphy (2002) notes that

in-the-money options would provide strongest incentives, but that the tax code dis-

courages such options. One potential interpretation is that the tax code leads to firms

choosing at-the-money options when in-the-money options may be more effi cient. Our

analysis indeed suggests that increases in informativeness lead to options optimally

being close to at-the-money.

A recent paper by Dittmann, Maug, and Spalt (2012) also considers the incentive

constraint when assessing the benefits of a specific form of increased informativeness

—indexing stock and options —and similarly show that indexation may weaken incen-

tives. They use a quite different setting from ours, which reflects the different aims of

each paper. Their primary goal is to calibrate real-life contracts, and so their model

incorporates risk aversion to allow them to input various risk aversion parameters into

the calibration. One disadvantage is that, under risk aversion, it is very diffi cult to

solve for the optimal contract. They therefore restrict the contract to comprising salary,

stock, and options, and hold stock constant when changing the contract to restore the

agent’s incentives upon indexation. This approach may underestimate the savings from

indexation, since it prevents the principal from responding optimally to the weakening

of incentives. In contrast, our primary goal is theoretical. We incorporate risk neutral-

ity, allowing us to take an optimal contracting approach where the principal changes

the contract optimally to restore incentives after an increase in informativeness. In

addition, our model allows the analysis of reductions in volatility through other means

than indexation, for example investing in a superior monitoring technology.

Other explanations for pay-for-luck have been proposed in the literature, partially

reviewed by Edmans and Gabaix (2009). Oyer (2004) shows that pay-for-luck may

be optimal if the value of employees’outside options vary with economic conditions

and if re-contracting is costly. Raith (2008) shows that it may be preferable to base

compensation on measures of output rather than input when the agent has private

information on the production technology. Axelson and Baliga (2009) argue that, for

contracts to be renegotiation-proof, the manager must have private information that

causes him to have a different view from the board on the value of his long-term pay.

Industry performance is an example of such information, and so it may be effi cient not

to filter it out. Gopalan, Milbourn, and Song (2010) show that tying the CEO’s pay

to industry performance induces him to choose the firm’s industry exposure correctly.
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This paper proceeds as follows. Section 1 presents the model. Section 2 shows that

the optimal contract takes the form of a call option. Section 3 derives the gains from a

reduction in the variance of the performance measure. Section 4 concludes. Appendix

A contains all proofs not in the main text.

1 The Model

We consider a standard principal-agent model with risk neutrality and limited liability,

similar to Innes (1990). The timing is as follows. At time t = −1, the principal (firm)

offers a compensation contractW to the agent (employee). At t = 0, the agent chooses

his effort level e ∈ {0, ē}. Effort of e = 0 is of zero cost to the agent, and e = ē costs

him C. At t = 1, the firm’s profit is realized. It is given by π̃ = e + ṽ + ε̃, where π̃

is contractible, but the individual components e, ṽ, and ε̃ are all unobservable. The

random variables ṽ ∼ N (0, σ2) and ε̃ ∼ N (0, σ̄2 − σ2) are independent noise terms.

Since we focus on informativeness improvements at the margin, we assume that σ̄ − σ
is arbitrarily small. This assumption is purely for tractability, since it allows us to

consider only first-order effects in a Taylor expansion.

The discount rate is zero. The agent is risk-neutral and so maximizes his expected

wage E [W ], less the cost of effort. He is protected by limited liability and has a

reservation utility of zero. The principal is also risk-neutral and chooses the contract

W that maximizes the expected profit E [π̃], less the expected wage. Crucially, the

contract need not depend on profits π̃, but depends on a contractible performance

signal s̃. By default, the signal s̃ equals the profit π̃, but the principal has access to a

technology that allows her to filter out the shock ε̃ from the signal s̃ if she pays a cost κ

at t = −1. The cost κ can stem frommultiple sources. Under the interpretation that ε̃ is

a market or industry shock that affects a firm’s peers, removing the shock ε̃ corresponds

to RPE, in which case the cost κ stems from two sources. First, it can arise from the

literal cost of implementing RPE. While the actual calculation of industry performance,

given a peer group, is relatively costless, the determination of the peer group may

involve the hiring of compensation consultants. Second, the cost can also represent the

loss of the benefits of pay-for-luck highlighted by prior work, e.g. Oyer (2004), Raith

(2008), Axelson and Baliga (2009), and Gopalan, Milbourn, and Song (2010). Under

the alternative interpretation that ε̃ arises from signal imprecision, removing the shock
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corresponds to an improvement in the monitoring technology, in which case κ refers

to the cost of such an improvement. For example, Cornelli, Kominek, and Ljungqvist

(2013) show that boards of directors engage in extensive (and thus costly) monitoring

to gather soft information on the CEO’s competence, strategic choice, and effort.

The signal can be written:

s̃ = e+ ṽ + δε̃, (1)

where δ ∈ {0, 1} is a dummy variable. It equals zero if the firm filters the shock ε̃ out of
the signal s̃, in which case informativeness is maximized and the signal has variance σ2.

It equals one if the firm does not filter out the shock, in which case the signal s̃ equals

the profit π̃ and has variance σ̄2. The agent is thus paid for “luck” ε̃ (in addition to

the second “luck”term ṽ that cannot be filtered out, such as an idiosyncratic shock).

Given δ ∈ {0, 1}, let σ2(δ) denote the variance of s̃, so that σ2(δ) = σ2 +δ2(σ̄2−σ2) and

σ(δ) ∈ {σ, σ̄}. Choosing δ ∈ {0, 1} is equivalent to choosing σ ∈ {σ, σ̄}. To economize
on notation, we suppress the dependence of σ on δ.

Following Innes (1990), we make two assumptions on the set of feasible contracts.

First, the agent is protected by limited liability, so that W (s) ≥ 0 ∀ s. Second, the
pay-performance sensitivity is capped at 1: W ′(s) ≤ 1 ∀ s. Innes (1990) justifies this
constraint on two grounds. First, if it did not hold on some interval, the agent could

borrow on his own account to artificially increase the value of s on this interval, thus

undoing the contract. Second, the principal would exercise her control rights to burn

profits or sabotage the firm along this interval, since for any increase in the signal,

payments to the agent increase more than one-for-one.

Given a contract W (s) and a level of effort e, the agent’s expected wage is

E[W (s̃) |e] =

∫ ∞
−∞

W (s)ψ (s|e) ds,

where ψ (·) is the probability density function of s̃, for a given σ. The agent’s utility is
given by his expected wage, less the cost of effort. In the first-best, effort is verifiable.

Thus, to induce high effort, the principal simply directs the agent to exert e = ē; there

is no incentive constraint. To satisfy the agent’s participation constraint, the principal

pays him an expected wage E [W (s̃) |ē] that equals his cost of effort C. Thus, if

E [π̃|ē] − E [π̃|0] > C, i.e. ē > C, high effort is optimal. We thus assume ē > C

throughout, else even under the first-best, the principal would not want to induce
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effort. Since the agent’s expected wage equals his cost of effort, he earns zero rents.

In the second-best, the agent’s effort is unverifiable and so the contract must satisfy

an incentive constraint. The agent will exert effort if and only if:

E[W (s̃)|ē]− E[W (s̃)|0] ≥ C. (2)

Following standard arguments, this incentive constraint will bind. In contrast, the

participation constraint will typically be slack: since the agent’s reservation utility is

zero, his expected utility under the contract will represent rents. For a contract in

which he optimally chooses e = ē, we define the agency rent as the agent’s expected

wage minus his effort cost:

AR ≡ E [W (s̃)|ē]− C. (3)

Since the incentive constraint binds, the agency rent can be rewritten:

AR = E [W (s̃)|0] . (4)

The agency rent will be positive due to limited liability. Even if the agent shirks and

noise is negative, his wage cannot fall below zero. If he shirks and noise is suffi ciently

positive, the signal will be favorable enough that there is a suffi ciently high posterior

probability that the agent has worked, and so the optimal contract will pay him a

strictly positive wage. Thus, the expected wage upon shirking is strictly positive and

so the agent receives rents from shirking. To satisfy his incentive constraint, the agent

must also be offered rents for working.

We define X? implicitly by∫ ∞
X?

(s−X?) (ψ(s|ē)− ψ(s|0)) ds ≡ C. (5)

Intuitively, if the agent’s contract consists of an option on s with a strike price of X∗,

X∗ is the strike price that satisfies the agent’s incentive constraint with equality.3 We

make the following assumption to ensure that e = ē is second-best optimal:

ē−
∫ ∞
X?

(s−X?)ψ(s|ē)ds ≥ 0. (6)

3The assumption ē > C implies
∫∞
−∞ s (ψ(s|ē)− ψ(s|0)) ds > C, which in turn guarantees the

existence of X∗, as shown in the proof of Lemma 1.
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The first term is the benefit to the principal of inducing e = ē, and the second term

is the cost of the contract required to do so. If (6) did not hold, the principal would

allow the agent to shirk, in which case the problem would be trivial and the contract

would involve W (s̃) = 0 ∀ s. Note that (6) implies

ē ≥ C +

∫ ∞
X?

(s−X?)ψ(s|0)ds,

which is a stronger condition than ē ≥ C, which guarantees that effort is optimal in

the first-best. The additional term
∫∞
X?(s −X?)ψ(s|0)ds stems from the fact that the

agent earns rents from shirking, and thus must be given rents for working to induce

him to exert effort in the second-best.

The principal’s problem is to choose a contract W (s̃) and the filtering dummy δ to

minimize the sum of the agency rent and the cost κ (if paid)4, subject to the agent’s

incentive, participation, and limited liability constraints, plus the upper bound on the

slope of the contract. Her problem is thus given by:

min
W (s),δ∈{0,1}

E [W (s̃)|0] + (1− δ)κ s.t. (7)

E [W (s̃)|ē] = E [W (s̃)|0] + C (8)

0 ≤ W (s) ∀ s (9)

W ′(s) ≤ 1 ∀ s. (10)

Our setup is similar to the classic model of Innes (1990). He considers a financing

model where the agent (entrepreneur) chooses a financing contract to maximize his

objective function, subject to the incentive constraint of the agent and the participation

constraint of the principal (investor). In contrast, we consider a contracting model

where the principal (firm) chooses an employment contract to maximize her objective

function subject to the incentive and participation constraints of the agent (employee).

As per footnote 2 of Innes (1990), these two optimization problems yield the same

optimal contracts. In addition, Innes features a general noise distribution that satisfies

4More precisely, the principal seeks to maximize her objective function, which is expected gross
profits minus the expected wage and the cost κ. Since expected gross profits are unaffected by the
wage and cost κ, if the agent’s incentive constraint is satisfied, maximization of the objective function
is equivalent to minimization of the wage plus the cost κ. Since the wage equals E [W (s̃)|ē] and C is
a constant, minimization of the wage equals minimization of the agency rent (3), which equals (4).
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the monotone likelihood ratio property (“MLRP”) and a continuous action set. His

focus was to derive the form of the optimal contract and thus wishes to do so in

the most general setting. Our goal is different: given that the optimal contract is a

call option (as shown by Innes)5, we study how changes in informativeness affect the

agent’s incentives and thus the strike price of the option.6 We thus specialize to a

normal noise distribution and a binary effort level. A normal distribution satisfies the

MLRP and can be parameterized by its volatility σ, allowing us to study the effect of

informativeness in a tractable manner by varying σ (changes in this single parameter

generate mean-preserving spreads). With a continuous effort level, a change in σ may

alter the optimal effort level. It is well known that solving for the optimal effort

level in addition to the cheapest contract that induces a given effort level is extremely

complex (see, e.g., Grossman and Hart (1983)), and thus many papers focus on the

implementation of a given effort level (e.g. Dittmann and Maug (2007), Dittmann,

Maug, and Spalt (2008, 2011)).7 Edmans and Gabaix (2011) show that, if the benefits

of effort are multiplicative in firm size and the firm is suffi ciently large, it is always

optimal for the principal to implement the highest effort level and so the optimal effort

level is indeed fixed. We thus consider a binary effort setting where high effort is

optimal.

2 The Optimal Contract

This section solves for the optimal contract, taking as given the choice of the filtering

dummy δ ∈ {0, 1} and thus signal precision σ ∈ {σ, σ̄}. The analysis is similar to Innes
(1990); our main results will come in Section 3. The principal’s objective function (7)

thus becomes minW (s) E [W (s̃)|0]. We let ϕ and Φ denote the p.d.f. and c.d.f. of the

5Since Innes (1990) studies a financing setting, the optimal contract for the principal is debt. Thus,
the agent has equity, which is a call option on the firm’s assets.

6A consequence of these differences is that deviations from the first-best take different forms. Here,
the objective is to minimize the agency rent received by the agent, a problem that exists regardless of
whether the effort level is binary or continuous. In Innes (1990), the agent chooses the contract and
so the goal is not to minimize the agency rent, but the difference between the first- and second-best
levels of effort —hence the importance of allowing for a continuum of effort levels in his paper.

7Indeed, Innes (1990) does not solve for the optimal effort level or study how it is affected by the
parameters of the setting, but shows that an optimum exists.
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standard normal variable, respectively. The likelihood ratio is given by:

LR (i) ≡ ψ(s = i|ē)− ψ(s = i|0)

ψ(s = i|0)
=
ϕ
(
i−ē
σ

)
− ϕ

(
i
σ

)
ϕ
(
i
σ

) . (11)

It is strictly increasing in i, so the MLRP is satisfied. For any given σ ∈ {σ, σ̄}, let X̂
be implicitly defined by

ϕ

(
X̂ − ē
σ

)
≡ ϕ

(
X̂

σ

)
, (12)

which yields X̂ = ē
2
. Note that X̂ is the value of the signal such that the likelihood

ratio in (11) is zero when evaluated at i = X̂: X̂ is the least informative performance.

Since the likelihood ratio is strictly increasing, LR (i) > 0 if and only if i > X̂.

The optimal contract is given in Lemma 1.

Lemma 1 (Optimal contract.) For a given σ, the optimal contract is characterized by

W (s) = max{0, s−X(σ)}, i.e. (13)

W (s) = 0 ∀ s ≤ X (σ)

W ′ (s) = 1 ∀ s > X (σ) ,

where X (σ) > 0. The value of X (σ) is chosen so that the incentive constraint binds,

i.e.: ∫ ∞
X(σ)

(s−X(σ)) (ψ(s|ē)− ψ(s|0)) ds = C. (14)

There is a unique X (σ) which satisfies the incentive constraint (14).

The contract (13) is the payoff of a call option on s with strike price X(σ). While

the signal σ, and thus the principal’s filtering decision δ, affects the strike price X (σ),

the optimal contract remains a call option. The two forces that drive this result are the

constraints on contracting and the MLRP of the normal distribution. The intuition is

as in Innes (1990). The absolute value of the likelihood ratio is highest in the tails of the

distribution of s̃, so the signal is most informative about the agent’s effort in the tails.

The left tail cannot be used for incentive purposes due to the limited liability constraint,

so that incentives are concentrated in the right tail. With an upper-bound on the slope,
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the optimal contract involves call options on s̃ with the maximum feasible slope, i.e.

W ′ (s) = 1. This maximizes the likelihood that positive payments are received by an

agent who exerts high effort, which minimizes the agency rent.

The following corollary addresses how the strike price X (σ) depends on the cost of

effort C.

Corollary 1 (Effect of cost of effort on strike price.) X(σ) is strictly decreasing in C.

The higher the cost of effort C, the stronger incentives must be, so the lower X(σ)

is to increase the delta of the option and thus the agent’s incentives. This result is

important, because the value of X(σ) will play an important role in the next section.

3 The Value of Informativeness

3.1 Analytical results

We now determine the gains from increased informativeness. More precisely, we relate

the agency rent to the variance σ2 of the performance measure s̃.

Since the contract in (13) is optimal for a given σ ∈ {σ, σ̄}, the principal’s problem
is to choose σ to minimize the sum of the agency rent and the cost κ if paid. Using (4)

and (13), the optimization problem may be written:

min
δ∈{0,1}

∫ ∞
X(σ)

(s−X(σ))ψ(s|0)ds+ (1− δ)κ s.t. (14). (15)

Proposition 1 studies how varying σ forces the strike price of the option, X (σ), to

change in order to maintain incentive compatibility.

Proposition 1 (Effect of volatility on strike price.) (i) dX(σ)
dσ

> 0 if and only if X > X̂.

(ii) d2X
dσdX

> 0.

Proof. (Sketch of proof of part (i)). Implicitly differentiating the binding version of
the incentive constraint (2) yields:

∂

∂σ
{E [W (s̃)|ē]− E [W (s̃)|0]}+

∂

∂X
{E [W (s̃)|ē]− E [W (s̃)|0]} dX (σ)

dσ
= 0,

13



which becomes:
dX (σ)

dσ
= −

∂
∂σ
{E [W (s̃)|ē]− E [W (s̃)|0]}

∂
∂X
{E [W (s̃)|ē]− E [W (s̃)|0]}

. (16)

Appendix A shows that the denominator of the right-hand side (“RHS”) is always

negative, and that the numerator is positive if and only if X > X̂. Thus, dX(σ)
dσ

> 0 if

and only if X > X̂.

The denominator of the RHS of (16) represents the effect of changes in X on the

agent’s incentives, E [W (s̃)|ē] − E [W (s̃)|0]. The agent’s compensation is given by a

call option on the underlying variable s̃, and his incentives to work arise because effort

increases the mean of s̃ —working gives him an option worth E [W (s̃)|ē] rather than one
worth E[W (s̃)|0]. To highlight the dependence of the option values on the strike price,

let Y (e,X) denote (the value of) an option where the mean value of the underlying

variable is e and the strike price is X. We thus have

Y (ē, X) = E [W (s̃)|ē]
Y (0, X) = E [W (s̃)|0] .

An increase in the strike price X reduces the value of both call options, but par-

ticularly for Y (e,X) as it is more in the money. Thus, a rise in X reduces incentives,

leading to a negative denominator. The sign of dX(σ)
dσ

therefore equals the sign of the

numerator of (16).

In turn, the numerator represents the effect of changes in σ on the agent’s incentives.

This is equal to the vega (the sensitivity with respect to σ) of the option worth Y (e,X)

minus the vega of the option worth Y (e, 0). The vega of an option is always positive,

highest for an at-the-money option, and declines when the option moves either in-

the-money or out-of-the-money. If the option has a strike price of X̂ = e
2
(the least

informative performance measure), then Y
(
e, e

2

)
is in-the-money by e

2
, and Y

(
0, e

2

)
is out-of-the-money by e

2
. Thus, both options have the same vega, and so increases

in σ reduce the values of Y
(
e, e

2

)
and Y

(
0, e

2

)
equally. The incentives to exert effort,

Y
(
e, e

2

)
− Y

(
0, e

2

)
, are unchanged, and so the strike price X does not need to change.

We thus have dX(σ)
dσ

= 0 for X = X̂.

Now considerX < X̂. Then, Y (0, X) is closer to being at-the-money than Y (e,X),

and so it has a higher vega. The intuition is as follows. Volatility increases the value of

an option because the option holder benefits from its asymmetric payoff: his downside

14



risk is limited, but he benefits from the upside gain. Since the strike price is low, if

the agent works (and receives an option worth Y (e,X)), the expected signal e is very

far from the kink X, and thus the agent benefits little from the asymmetry. Thus,

when volatility increases, an agent who works benefits from the upside potential but

also bears the downside risk, and so Y (e,X) rises little with σ. In contrast, if the

agent shirks (and receives Y (0, X)), the expected signal 0 is close to the strike price

X, i.e. close to the kink. Thus, when volatility increases, an agent who works benefits

from the upside potential and is protected from the downside risk. Thus, Y (0, X) rises

significantly with σ. In sum, an increase in σ reduces the agent’s effort incentives, and

so a fall in X (σ) is needed to restore incentive compatibility (since it increase the value

of Y (e,X) more than Y (0, X)). In simple language, when volatility rises and X < X̂,

the agent thinks: “I’m not going to bother working hard, because even if I do, I might

be unlucky and so profits will be low. I might as well take it easy, because even if I

get unlucky and profits become very low, that doesn’t matter, because I can’t get paid

less than zero no matter how low profits get.”

Finally, consider X > X̂. Then, since Y (e,X) is closer to being at-the-money than

Y (0, X), it has a higher vega (the intuition is analogous to the case of X < X̂). Since

Y (e,X) is close to the kink, when volatility increases, an agent who works benefits

from the upside potential and is protected from the downside risk. Thus, Y (e,X)

rises significantly with σ. In contrast, if the agent shirks (and receives Y (0, X)), the

expected signal 0 is well below the kink. Thus, when volatility increases, the agent does

not bear the downside risk, but is unlikely to benefit from the upside potential either:

even if noise is positive, the option will still be out-of-the-money. Thus, Y (0, X) rises

little with σ. In sum, an increase in σ augments the agent’s effort incentives, and so a

rise in X (σ) is possible without violating the incentive constraint. In simple language,

when volatility rises and X > X̂, the agent thinks: “If volatility was low, I wouldn’t

bother working because the target X̂ is so high that I wouldn’t meet it, even if I did

work. But, now that volatility is high, I will work —because if I do, and I get lucky,

I’ll meet the target. But if I get lucky and I don’t work, luck alone won’t be enough

to meet the target.”

Part (ii) of Proposition 1 states a related result. As the initial strike price X rises,

increases in informativeness (i.e. reductions in the variance) have a more negative

effect on the strike price. In other words, improvements in informativeness increasingly

erode incentives, and require the principal to lower the strike price to maintain incentive
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compatibility.

Proposition 1 implies that, in all cases, improvements in informativeness draw the

strike price X towards X̂, i.e. bring options closer to at-the-money. Thus, improve-

ments in signal precision (e.g. increases in stock market effi ciency) lead to at-the-money

options being optimal, in contrast to Bebchuk and Fried’s (2004) concern that the al-

most universal practice of granting at-the-money options is ineffi cient. They argue

that out-of-the-money options would be cheaper for the firm, but this view ignores the

incentive effect: out-of-the-money options have lower deltas and thus may provide the

agent with insuffi cient incentives.

In addition, the proof and intuition behind Proposition 1 suggest that exogenous

changes in σwill have different effects on the incentives of agents depending on the

moneyness of their options. In particular, it will increase (reduce) effort the incentives

of agents with out-of-the-money (in-the-money) options. Thus, if firms are able to alter

the terms of existing stock options in response to these unexpected changes, they will

reduce the strike price of agents with in-the-money options. Such repricing is found

empirically by Brenner, Sundaram, and Yermack (2000); Acharya, John, and Sundaram

(2000) also study the repricing of options theoretically, although in responses to changes

in the mean rather than volatility of the signal.

Corollary 2 gives a necessary and suffi cient condition for X > X̂, i.e. for improve-

ments in informativeness to weaken incentives.

Corollary 2 (Condition for high strike price.) X > X̂ if and only if
∫∞
X̂

(s−X̂) (ψ(s|ē)− ψ(s|0)) >

C.

Proof. As shown in the proof of Lemma 1, we have
∫∞

0
s (ψ(s|ē)− ψ(s|0)) > C and

limX→∞
∫∞
X

(s − X) (ψ(s|ē)− ψ(s|0)) < C, and the LHS of the incentive constraint

in (14) is strictly decreasing in X. Given that the equilibrium X satisfies (14) as an

equality, we have the above result.

We now turn from studying the effect of volatility on the exercise price to its effect

on the agency rent. There are two effects. The first is the direct effect: as is well-known,

a reduction in σ (an increase in informativeness) reduces the value of an option, and

thus the agency rent. This benefits the principal. The second is the indirect effect: as

shown in Proposition 1, to maintain incentive compatibility, a change in σ forces the

strike price to either increase or decrease, which in turn affects the value of the option

and thus the agency rent. Lemma 2 compares the partial (direct) effect of volatility
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on the agency rent, which ignores the change in the strike price, with the total effect,

which also includes the indirect effect via the strike price.

Lemma 2 (Partial and total effects of volatility on agency rent.)

dAR(σ)

dσ
<
∂AR(σ)

∂σ
if and only if X > X̂. (17)

Proof. The total derivative is given by

dAR(σ)

dσ
=
∂AR(σ)

∂σ
+
∂AR(σ)

∂X

dX (σ)

dσ
. (18)

The partial derivative

∂AR(σ)

∂X
=

∂

∂X
E [W (s̃)|0] =

∂

∂X

∫ ∞
X(σ)

(s−X(σ))ψ(s|0)ds = −
∫ ∞
X(σ)

ψ(s|0)ds

is always negative: an increase in the strike price reduces the agency rent by making

the option less valuable. The derivative dX(σ)
dσ

reflects how the strike price must change

with volatility to maintain incentive compatibility. From Proposition 1, it is positive

if and only if X > X̂. Thus, dAR(σ)
dσ

< ∂AR(σ)
∂σ

if and only if X > X̂.

Lemma 2 shows that an increase in volatility has two effects on the agency rent.

First, ∂AR(σ)
∂σ

captures the “volatility effect”: the direct effect of volatility on the value

of a call option, which is positive. Second, the “strike price effect”arises because an

increase in volatility changes the strike priceX(σ) necessary for the incentive constraint

to continue to hold: dX(σ)
dσ

may be positive or negative. Since ∂AR(σ)
∂X

< 0, any increase

(decrease) in the strike price lowers (augments) the total agency rent. Thus, the strike

price effect can either reinforce or offset the volatility effect. For high incentives (X <

X̂), dX(σ)
dσ

< 0 (see Lemma 1), so that the volatility effect and the strike price effect

both lead to a lower agency rent as σ is reduced. For low incentives, however (X > X̂),

then dX(σ)
dσ

> 0, so that the strike price effect partly offsets the volatility effect. In

this case, the gains from improved informativeness (i.e., from a lower σ) are smaller

when considering the incentive constraint, and thus calculating the gains using the

total rather than partial derivative.

Proposition 2 below gives the expression for the effect of changes in informativeness

on the agency rent.
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Proposition 2 (Effect of volatility on agency rent.) For a given σ ∈ {σ, σ̄}, dAR(σ)
dσ

is

given by:

dAR(σ)

dσ
= ϕ

(
X(σ)

σ

)
−
[
1− Φ

(
X(σ)

σ

)] ϕ(X(σ)−ē
σ

)
− ϕ

(
X(σ)
σ

)
Φ
(
X(σ)
σ

)
− Φ

(
X(σ)−ē

σ

) (19)

and dAR(σ)
dσ

> 0.

Proof. (Sketch). We start with the definition of dAR(σ)
dσ

in equation (18). We substitute

for dX(σ)
dσ

using (16), and for ∂AR(σ)
∂σ

and ∂AR(σ)
∂X

using (4). This yields:

dAR(σ)

dσ
=

∂

∂σ
{E[W (s̃)|0]} − ∂

∂X
{E[W (s̃)|0]}

∂
∂σ
{E [W (s̃)|ē]− E [W (s̃)|0]}

∂
∂X
{E [W (s̃)|ē]− E [W (s̃)|0]}

. (20)

Calculating the derivatives yields:

dAR(σ)

dσ
= ϕ

(
X(σ)

σ

)
−
[
1− Φ

(
X(σ)

σ

)] ϕ(X(σ)−ē
σ

)
− ϕ

(
X(σ)
σ

)
Φ
(
X(σ)
σ

)
− Φ

(
X(σ)−ē

σ

) . (21)

Appendix A shows that dAR(σ)
dσ

> 0 ∀ X.
The result that dAR(σ)

dσ
> 0 means that the strike price effect never outweighs the

volatility effect: even though improvements in informativeness may weaken incentives,

they can never make the principal worse off. However, the strike price effect is still

important to consider, since it may reduce the benefits of informativeness suffi ciently

for it to be effi cient for the principal not to pay the cost κ, as we will show in Proposition

3.

Note that dAR(σ)
dσ

> 0 is equivalent to
ϕ(X(σ)−ē

σ )−ϕ(X(σ)
σ )

ϕ(X(σ)
σ )

<
Φ(X(σ)

σ )−Φ(X(σ)−ē
σ )

1−Φ(X(σ)
σ )

. The

left-hand-side (“LHS”) is the (ambiguous) effect of changing σ on incentives, divided

by its (positive) effect on the agency rent. This ratio turns out to be the likelihood

ratio for i = X (σ), i.e. where the option is at the money. The RHS is the (negative)

effect of changing X on incentives, divided by its (negative) effect on the agency rent.

Corollary 3 shows that the effect of volatility on the agency rent asymptotes to zero

as the moral hazard problem becomes weaker.
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Corollary 3 (Effect of volatility on agency rent, limiting case)

dAR(σ)

dσ
−→X→∞ 0 and

dAR(σ)
dσ

∂AR(σ)
∂σ

−→X→∞ 0 (22)

dAR(σ)

dσ
−→C→0 0 and

dAR(σ)
dσ

∂AR(σ)
∂σ

−→C→0 0. (23)

The first part of Corollary 3 shows that, as the strike price X approaches infinity,

the total effect of informativeness on the agency rent tends to zero, and the gains from

improved informativeness are infinitely smaller when assessed with the total derivative

than with the partial derivative.

While the strike priceX is an endogenous variable, the effort cost C is the exogenous

parameter that drives changes in X. When C tends to zero, the moral hazard problem

becomes weaker and fewer incentives (a lower option delta) is required; this is achieved

by augmenting the strike price X.

We now compare the principal’s gains from reducing the agency rent by increasing

informativeness with the cost of doing so. She will filter out the shock (choose δ = 0)

if and only if:

AR (σ) > AR (σ) + κ.

Due to the assumption that σ̄ − σ is arbitrarily small, we can do a first-order Taylor
expansion to study how changes in informativeness affect the agency rent:

AR (σ) = AR (σ) +
dAR (σ)

dσ
(σ − σ) .

Thus, the principal increases informativeness if and only if

dAR(σ)

dσ
>

κ

σ̄ − σ . (24)

Proposition 3 (Low-powered incentives and informativeness.) For any given κ, there
exists X̄ (κ) ≥ X̂ such that, if X > X̄ (κ), the principal sets δ = 1.

Proof. The principal sets δ = 1 if and only if the cost of informativeness outweighs
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the gains, that is:

κ

σ̄ − σ >
dAR(σ)

dσ
=
∂AR(σ)

∂σ
+
∂AR(σ)

∂X

dX (σ)

dσ
(25)

For X > X̂, the second-term on the RHS is negative according to Lemma 2. Therefore,

(25) is satisfied if:
κ

σ̄ − σ >
∂AR(σ)

∂σ
. (26)

Using (4) and (39) in the proof of Proposition 1, this becomes:

κ

σ̄ − σ > ϕ

(
X(σ)

σ

)
> 0. (27)

We know that ϕ, the p.d.f. of the standard normal variable, is monotonically decreasing

in X ∈ [0,∞), and approaches zero as X →∞. There are two cases to consider.
(i) If κ > ϕ(0), (27) is satisfied for any X > X̂. In this case, we can set X̄ = X̂:

X > X̂ is suffi cient (although unnecessary) for the principal to set δ = 1.

(ii) If κ < ϕ(0), it follows that, for any given κ, there exists X̄ (κ) which is defined

as
κ

σ̄ − σ ≡ ϕ

(
X̄ (κ)

σ

)
(28)

with X̄ (κ) > X̂ > 0, and (27) is satisfied if and only if X > X̄.

Since (27) is suffi cient for (25), it follows that (25) is satisfied if X > X̄.

For suffi ciently low-powered incentives (X > X̄), the principal chooses to not filter

out the shock. The intuition is as follows. At X = X̂, the indirect effect is zero, so the

total benefit of informativeness equal the direct effect, which is given by the option’s

vega. As X rises above X̂, the direct effect becomes less positive, as an option’s vega

falls as it moves out-of-the-money. In addition, the indirect effect becomes negative

as a rise in informativeness weakens incentives. Thus, if the total effect dAR(σ)
dσ

is less

than κ
σ̄−σ at X = X̂ (case (i)), we have dAR(σ)

dσ
< κ

σ̄−σ for all X > X̂ and so we can set

X̄ = X̂. If dAR(σ)
dσ

> κ
σ̄−σ at X = X̂, (case ii), since the direct effect is monotonically

decreasing in X, there will exist an X̄ > X̂ for which the direct effect equals κ
σ̄−σ . Since

the indirect effect is negative for X > X̂, this is suffi cient for δ = 1.
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Figure 1: Total and partial derivative of the agency rent with respect to σ for a range
of values of X, for ē = 1 and σ = 1.

Corollary 4 (Cost of effort and informativeness) For any given κ, there exists a cost
of effort C̄ such that, for C < C̄, the principal sets δ = 1.

Corollary 4 then shows that, for any κ > 0, it is suboptimal to set δ = 1 and filter

out the shock ε̃ as C → 0 (i.e., the cost of effort approaches zero). Thus, pay-for-luck

is optimal.

3.2 Graphical illustrations

We now demonstrate graphically the importance of considering the incentive constraint

when evaluating the effect of informativeness on incentives, i.e. studying the total

rather than partial derivative.

In Figures 1 and 2, we illustrate both the value of the total derivative dAR(σ)
dσ

, as

calculated in (19), and the value of the partial derivative ∂AR(σ)
∂σ

, as calculated in (39)

in the Appendix, for a range of values of X. Figure 1 uses σ = 1, and Figure 2 uses

σ = 3. Both figures consider ē = 1 (and so X̂ = 0.5); numerical simulations show that

ē has little effect on the shapes of the functions displayed in Figures 1 and 2.
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Figure 2: Total and partial derivative of the agency rent with respect to σ for a range
of values of X, for ē = 1 and σ = 3.

To understand the graphs, recall that the total derivative is given by dAR(σ)
dσ

=
∂AR(σ)
∂σ

+ ∂AR(σ)
∂X

dX(σ)
dσ
. The gains associated with the partial derivative, ∂AR(σ)

∂σ
, tend to

zero as the strike price approaches either −∞ or ∞. The vega of an option is greatest
when the option is at-the-money, i.e. X = ē. An at-the-money option benefits most

from the asymmetry in an option’s payoff: a high noise realization leads to a large

increase in the option’s payoff, but a low noise realization has no effect as the agent

will not exercise the option.

The indirect effect, ∂AR(σ)
∂X

dX(σ)
dσ
, captures the effect of volatility on the agency rent

through affecting the agent’s incentives. From Proposition 1, dX(σ)
dσ

is positive if and

only if X > X̂. Since ∂AR(σ)
∂X

< 0, the indirect effect in Figures 1 and 2 is negative if

and only if X < X̂ = 1
2
. As X decreases below X̂, the incentive benefits of greater

informativeness strengthen (dX(σ)
dσ

becomes more negative). Since the option becomes

increasingly in the money, ∂AR(σ)
∂X

becomes even more negative and falls towards −1.

Thus, the indirect effect ∂AR(σ)
∂X

dX(σ)
dσ

becomes monotonically more positive as X falls.

However, as X rises above X̂, there are two effects working in opposite directions. On
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the one hand, greater informativeness becomes increasingly detrimental to incentives

(dX(σ)
dσ

becomes more positive). On the other hand, the agency rent is less affected

by the strike price, and ∂AR(σ)
∂X

approaches zero: when the option is deeply out-of-

the-money, its value is close to zero and thus it is little affected by changes in the

strike price. Thus, the impact of X on the indirect effect is non-monotonic. As X

initially rises above X̂, the indirect effect becomes increasingly negative as the option

has significant value, so the change in the strike price required to maintain incentives

has a large increase on this value. However, as X continues to rise, the option’s value

asymptotes towards zero and becomes little affected by the strike price, so the indirect

effect also asymptotes towards zero and becomes less negative.

The total derivative dAR(σ)
dσ

combines these two effects. While the direct effect

is initially increasing in X, this is outweighed by the fact that the indirect effect is

initially decreasing in X. Overall, the total gains from increased informativeness are

monotonically decreasing inX. The speed of convergence of the total derivative towards

zero is striking. For σ = 1, at X = 0 the gains from a marginal change in σ are more

than two millions times greater than at X = 5. For σ = 3, however, the gains are only

16.9 times greater at X = 0 than at X = 5.

In both Figures, consistent with Lemma 2, considering only the partial derivative

leads to an underestimation (overestimation) of the total gains from improved infor-

mativeness for X < (>) X̂. The partial sensitivity measure substantially overestimates

the total gains for suffi ciently large X. For example, for σ = 1 and X = 2 (which is

only one standard deviation away from the expected performance of ē = 1), the gains

from a marginal change in σ are 2.4 times larger with the partial sensitivity measure

than with the total sensitivity measure. Thus, even for non-extreme parameter values,

gains from improved informativeness can be much lower if the strike price effect is taken

into account. Comparing across the Figures shows that, for out-of-the-money options,

the discrepancy is decreasing in σ: for X = 2 and σ = 3, the gains from a marginal

change in σ are 1.6 times larger with the partial sensitivity measure than with the total

sensitivity measure. For X = ē (the benchmark case of an at-the-money option), with

σ = 1 (respectively σ = 3) the gains are 1.4 (respectively 1.2) times higher with the

partial sensitivity measure than with the total sensitivity measure.

Another comparison across the Figures shows that the direct effect of improved

informativeness is higher in Figure 2, where initial volatility is greater. This direct

effect is given by vega, and so the effect of initial volatility on vega is given by an
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option’s vomma, the second derivative of its value with respect to volatility (∂
2Y
∂σ2 ). For

a normally distributed stock price, vomma is always positive:

∂2AR(σ)

∂σ2
=

∂

∂σ
ϕ

(
X(σ)

σ

)
=

1√
2π

X2

σ3
exp

{
−X

2

2σ2

}
> 0.

Thus, a higher initial volatility augments an option’s vega, and thus the principal’s

gain from increased informativeness. That an increase in σ augments the direct effect

also explains why the discrepancy between the partial and total sensitivities shrinks

with σ: as the direct effect increases, it comprises a larger component of the total.

Both Figures 1 and 2 show that the total gains from increased informativeness are

declining in X. One concern is that when X is high, the moral hazard problem is small

to begin with, so it may seem unsurprising that the gains from alleviating the moral

hazard problem (by increasing informativeness) are small in absolute terms. Thus, it

seems natural that, if the cost κ of increasing informativeness is fixed in absolute terms,

the principal will only pay the cost if the moral hazard problem is large. We thus now

compute the gains from improved informativeness as a percentage of the expected cost

of compensation, i.e. calculate
∂AR
∂σ

AR+C
and

dAR
dσ

AR+C
.

These gains are illustrated in Figure 3, for σ = 1. When the gains are measured in

percentage terms, the direction of the difference between the partial and total deriva-

tives naturally remains unchanged, but the magnitude of the difference becomes much

greater for a high X, since the expected cost of compensation is decreasing in X. When

measured in absolute terms, the partial derivative was maximized at X = 0; when mea-

sured in relative terms, Figure 3 shows that it is maximized for X > 0, because the

expected cost of compensation is decreasing in X. When measured in absolute terms,

the total derivative was monotonically decreasing in X. When measured in relative

terms, there is now an offsetting effect since the cost of compensation is also decreasing

in X. However, the second effect is always weaker, so the total derivative in relative

terms continues to decrease in X, but just at a slower rate than in absolute terms.8

Thus, even if the cost of increasing informativeness κ were a percentage of the

cost of compensation, it remains the case that, when the incentive effect is taken into

account, the principal will not filter out the shock ε̃ when X is suffi ciently high. Thus,

employees with high-powered incentives (such as CEOs) should be less paid for luck

8We intend to prove this result analytically in a future draft.
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and more subject to RPE than those with low-powered incentives (such as rank-and-

file employees). Oyer and Schaefer (2005), Hochberg and Lindsey (2010), and Kim

and Ouimet (2013) indeed find that rank-and-file employees are given significant non-

indexed options. Note that an analysis focusing on the partial derivative and ignoring

the incentive effect would reach a different opposite conclusion: if the cost of increasing

informativeness were in percentage terms, the principal would not filter out the shock

not only if X is suffi ciently high, but also if it is suffi ciently low.

Figure 3: Total and partial derivative of the agency

rent with respect to σ for a range of values of X, for

ē = 1 and σ = 1, expressed as a fraction of the

expected cost of compensation in equilibrium.

4 Conclusion

This paper studies the principal’s benefits from increasing the informativeness of the

performance measure used to evaluate the agent. In particular, it shows the criticality

of taking into account the effect of increased informativeness on the agent’s effort

incentives, and that ignoring this effect can lead to incorrect conclusions on whether

the principal should incur the cost of filtering out exogenous shocks.

We show that, if incentives are low-powered to begin with (the contract involves

an out-of-the-money option), an increase in informativeness reduces the agent’s effort
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incentives. The intuition is that, if the option is suffi ciently out-of-the-money when

granted, it will only become in-the-money at maturity if the agent both exerts effort

and receives a suffi ciently positive shock. When informativeness increases, and noise

falls, positive shocks are less likely and so the agent may choose not to work. Thus,

while the increase in informativeness directly reduces the agent’s rents by decreasing

the value of his option, this effect is partially offset by the fact that the strike price

of the option must fall, increasing the agent’s rents, to maintain his effort incentives.

If increasing informativeness is costly, it may be optimal for the principal not to filter

out exogenous shocks, rationalizing the scarcity of relative performance evaluation

in reality. Interestingly, thus result continues to hold when the cost of increasing

informativeness is proportional to the cost of compensation and thus the severity of

the moral hazard problem.

In contrast, when incentives are high-powered to begin with, an increase in infor-

mativeness augments the agent’s effort incentives, which provides an additional gain

from informativeness over and above the direct effect of reducing volatility traditionally

focused upon. Thus, the benefit from filtering out exogenous shocks depends critically

on the strength of incentives, and thus the magnitude of the moral hazard problem to

begin with.
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A Appendix

Proof of Lemma 1
We start by arguing that the optimal contract W (s) will be continuous. First, the

likelihood ratio is increasing in s for any s, so that the optimal contract is nondecreasing

in s for any s, which rules out downward discontinuities inW (s). Second, the constraint

that W ′(s) ≤ 1 rules out upward discontinuities.

Denoting the Lagrange multipliers associated with the three constraints (8), (9),

and (10) for a given s by µ, λ(s), and η(s) respectively, the Lagrangian is given by:

L =

∫ ∞
−∞

W (s)ψ(s|0)ds− µ
[ ∫ ∞
−∞

W (s)ψ(s|ē)ds− C −
∫ ∞
−∞

W (s)ψ(s|0)ds
]

−
∫ ∞
−∞

λ(s)W (s) ds−
∫ ∞
−∞

η(s)(1−W ′(s))ds

=

∫ ∞
−∞

(
(1 + µ)W (s) + µC − µψ(s|ē)

ψ(s|0)
W (s)

)
ψ(s|0)ds

−
∫ ∞
−∞

(
λ(s)W (s)− η(s)(1−W ′(s))

)
ds. (29)

Since the optimal contract W (s) is continuous and lims→−∞W (s) = 09, we have

W (s) =

∫ s

−∞
W ′(x)dx =

∫ s−ds

−∞
W ′(x)dx+W ′(s)ds. (30)

It follows that

dW ′(s)

dW (s)
=

(
dW (s)

dW ′(s)

)−1

=

(
d
( ∫ s−ds
−∞ W ′(x)dx+W ′(s)ds

)
dW ′(s)

)−1

=
1

ds
. (31)

The first-order necessary condition with respect to W (s) to the constrained opti-

9Since the likelihood ratio of the normal distribution is increasing, we know that the optimal
contract is nondecreasing in π. Therefore, W (π) ≥ limx→−∞W (x), for any π. Consider any contract
W (π) characterized by limx→−∞W (x) = ε > 0. Then define W ?(π) ≡ W (π) − ε for all π. The
contract W ?(π) does not violate any constraint (in particular, it satisfies the incentive constraint),
and it is characterized by a lower agency rent than W (π). This shows that the contract W (π) is not
optimal.
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mization problem is(
(1 + µ) +−µψ(s|ē)

ψ(s|0)

)
ψ(s|0)− λ(s) + η(s)

1

ds
= 0. (32)

We define

φ(s) ≡
(

(1 + µ) +−µψ(s|ē)
ψ(s|0)

)
ψ(s|0) (33)

If φ(s) > 0 for a given s, then (32) imposes:

−λ(s) + η(s)
1

ds
< 0.

Given the non-negativity constraints on the Lagrange multipliers, a necessary condition

for this inequality to hold is λ(s) > 0. However, λ(s) > 0 if and only if W (s) = 0.

If φ(s) < 0 for a given s, then (32) imposes that

−λ(s) + η(s)
1

ds
> 0. (34)

Given the non-negativity constraints on the Lagrange multipliers, this implies that

η(s) > 0.

Since µ is a constant and the likelihood ratio is monotonically increasing in s, we

know from (33) that φ(s) = 0 on a set of probability zero, and that the optimal contract

(which is incentive-compatible) exists if there exists a finite and positive X such that

φ(s) > 0 ⇔ ψ(s|ē)
ψ(s|0)

<
1 + µ

µ
⇔ s < X, (35)

φ(s) < 0 ⇔ ψ(s|ē)
ψ(s|0)

>
1 + µ

µ
⇔ s > X. (36)

We also know that W (s) = 0 for s < X. We still have to determine the form of

the optimal contract for s > X. Given the non-negativity constraints on the Lagrange

multipliers discussed above, we know that, for s > X, (10) is binding since η(s) > 0.

The optimal contract is therefore characterized by W (s) = 0 ∀ s < X, and W ′(s) = 1

∀ s > X.

We now prove that there is a unique positive X (σ) that satisfies the incentive

constraint (14) with equality. First, for a contract characterized by W (s) = 0 ∀
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s < X, and W ′(s) = 1 ∀ s > X, the incentive constraint with a given X is∫ ∞
X

(s−X)ψ(s|ē)ds−
∫ ∞
X

(s−X)ψ(s|0)ds = C. (37)

The first derivative of the LHS of (37) with respect to X is equal to

−
∫ ∞
X

ψ(s|ē)ds+

∫ ∞
X

ψ(s|0)ds

= −Pr(s > X|ē) + Pr(s > X|0)

which is strictly negative for anyX, because of first-order stochastic dominance (“FOSD”),

which is implied by MLRP.

Second, the LHS of (37) tends to zero as X approaches∞. Third, the condition for
effort to be optimal under the first-best, ē > C, implies

∫∞
−∞ s (ψ(s|ē)− ψ(s|0)) ds > C,

which in turn guarantees that the LHS of (37) is strictly larger than C for X = 0.

Therefore, there exists one and only one positive and finite X such that the LHS

of (37) equals C, i.e., such that the incentive-constraint with the optimal contract is

satisfied as an equality.

Proof of Corollary 1
On the one hand, X(σ) satisfies the incentive constraint in (37) as an equality, by

definition. On the other hand, the LHS of the incentive constraint in (37) is strictly

decreasing in X (see Lemma 1). Since the RHS of (37) is equal to C, this implies that

X(σ) is strictly decreasing in C.

Proof of Proposition 1
We start with part (i). First,

∂

∂σ
E[W (s̃)|e] =

∂

∂σ

∫ ∞
X(σ)

(x−X(σ))
1√
2πσ

exp
{
− (x− e)2

2σ2

}
dx (38)

=
∂

∂σ

∫ ∞
X(σ)−e

(x+ e−X(σ))
1√
2πσ

exp
{
− x2

2σ2

}
dx

=
∂

∂σ

∫ ∞
X(σ)−e

x
1√
2πσ

exp
{
− x2

2σ2

}
dx− (X(σ)− e) ∂

∂σ

∫ ∞
X(σ)−e

1√
2πσ

exp
{
− x2

2σ2

}
dx
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=
∂

∂σ

{
σ√
2π

exp
{
− (X(σ)− e)2

2σ2

}}
− (X(σ)− e) ∂

∂σ

∫ ∞
X(σ)−e

σ

1√
2π

exp
{
− u2

2

}
du

=
1√
2π

exp
{
−(X(σ)− e)2

2σ2

}[
1+

(X(σ)− e)2

σ2

]
− 1√

2π

(X(σ)− e)2

σ2
exp

{
−(X(σ)− e)2

2σ2

}
=

1√
2π

exp
{
− (X(σ)− e)2

2σ2

}
= ϕ

(X(σ)− e
σ

)
(39)

which is positive. It follows that

∂

∂σ
{E [W (s̃)|ē]− E [W (s̃)|0]} =

[
ϕ
(X(σ)− ē

σ

)
− ϕ

(X(σ)

σ

)]
.

That is, the RHS of the numerator of (16) is positive if and only if

ϕ
(X(σ)− ē

σ

)
> ϕ

(X(σ)

σ

)
. (40)

Since

ϕ
(X̂ − ē

σ

)
≡ ϕ

(X̂
σ

)
by definition of X̂, and since two p.d.f.s of normal variables with the same variance

intersect only once, we know that (40) is satisfied, and dX(σ)
dσ

> 0, if and only if

X(σ) > X̂.

Second,

∂

∂X
E[W (s̃)|e] =

∂

∂X

∫ ∞
X(σ)

(x−X(σ))
1√
2πσ

exp
{
− (x− e)2

2σ2

}
dx

= −
∫ ∞
X(σ)

1√
2πσ

exp
{
− (x− e)2

2σ2

}
dx = −

(
1− Φ

(
X(σ)− e

σ

))
. (41)

It follows that

∂

∂X
{E [W (s̃)|ē]− E [W (s̃)|0]} = −

(
1−Φ

(X(σ)− ē
σ

))
+
(
1−Φ

(X(σ)

σ

))
= Φ

(X(σ)− ē
σ

)
−Φ
(X(σ)

σ

)
.

MLRP implies FOSD, therefore

Φ
(X(σ)

σ

)
> Φ

(X(σ)− ē
σ

)
.
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which implies
∂

∂X
{E [W (s̃)|ē]− E [W (s̃)|0]} < 0.

Thus, the RHS of the denominator of (16) is negative.

We now move to part (ii). To simplify notations, define

x ≡ X

σ
, t ≡ ē

σ
.

We wish to show that ∀t > 0

f(x, t) ≡ [ϕ(x)− ϕ(x− t)]2 − [Φ(x)− Φ(x− t)][ϕ′(x)− ϕ′(x− t)] > 0, ∀x, (42)

where

ϕ(x) =
1√
2π
e−

x2

2

and

Φ(x) =

∫ x

−∞
ϕ(y) dy

For t = 0, f(x, 0) is trivially 0.

Since ϕ(x) = ϕ(−x), we have Φ(x) − Φ(x − t) = Φ(−x + t) − Φ(−x) and ϕ′(x) −
ϕ′(x − t) = ϕ′(−x + t) − ϕ′(−x). As a consequence, f(x, t) = f(−x + t, t). We thus

only have to study x ≥ t
2
> 0.

We first analyze the term ϕ′(x)− ϕ′(x− t). Since

ϕ′(x) = − x√
2π
e−

x2

2 ,

ϕ′(x)− ϕ′−t(x−t/2) + x− t).

When x ≥ t/2, the function e−t(x−t/2) − 1 + t
x
is only equal to zero at one point, since

it monotonically decreases from 2 to −1. Let that point be x0. Then

ϕ′(x)− ϕ′(x− t)


< 0 t

2
≤ x < x0

= 0 x = x0

> 0 x > x0

.
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We know that when x ∈ [ t
2
, x0], f(x, t) > 0 since [ϕ(x) − ϕ(x − t)]2 > 0 and Φ(x) −

Φ(x− t) > 0 ∀x, so that (42) is proven for x ∈ [ t
2
, x0]

We now prove (42) for x > x0. Within that range (we omit the argument t in the

following)

f(x, t) > 0 ⇐⇒ g(x) ≡ f(x, t)

ϕ′(x)− ϕ′(x− t) > 0.

To prove the latter, we first calculate

g′(x) =
2[ϕ(x)− ϕ(x− t)][ϕ′(x)− ϕ′2 − [ϕ(x)− ϕ(x− t)]2[ϕ′′(x)− ϕ′′(x− t)]

[ϕ′(x)− ϕ′2

− [ϕ(x)− ϕ(x− t)]

=
[ϕ(x)− ϕ(x− t)][ϕ′(x)− ϕ′2 − [ϕ(x)− ϕ(x− t)]2[ϕ′′(x)− ϕ′′(x− t)]

[ϕ′(x)− ϕ′2

=
[ϕ(x)− ϕ(x− t)]ϕ(x− t)2

[ϕ′(x)− ϕ′2{(
−xe−t(x−t/2) + x− t

)2 −
[
(x2 − 1)e−t(x−t/2) − (x− t)2 + 1

] (
e−t(x−t/2) − 1

)}
=

[ϕ(x)− ϕ(x− t)]ϕ(x− t)2

[ϕ′(x)− ϕ′2
[(
e−t(x−t/2) − 1

)2
+ t2e−t(x−t/2)

]
< 0, x ∈ (x0,∞),

where in the last step we used the fact that ϕ(x) < ϕ(x− t) when x > t/2. Therefore,

g(x) > 0 ∀x ∈ (x0,∞) ⇐⇒ lim
x→∞

g(x) ≥ 0.

Since

g(x) =
[ϕ(x)− ϕ(x− t)]2
ϕ′(x)− ϕ′(x− t) − Φ(x) + Φ(x− t)

=
1√
2π
e−(x−t)2/2

(
e−t(x−t/2) − 1

)2

−xe−t(x−t/2) + x− t − Φ(x) + Φ(x− t)
,

it is clear that

lim
x→∞

g(x) = 0.

Proof of Proposition 2
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We wish to show for t > 0,

Φ(x)− Φ(x− t)
1− Φ(x)

>
ϕ(x− t)− ϕ(x)

ϕ(x)

which can be rewritten as

Φ(t− x)

Φ(−x)
>
ϕ(x− t)
ϕ(x)

, ∀x. (43)

or equivalently

h(x) ≡ Φ(t− x)ϕ(−x)− Φ(−x)ϕ(t− x) > 0, ∀x. (44)

First, when x ≤ t
2
, ϕ(t− x) ≤ ϕ(−x). Therefore

Φ(t− x)

Φ(−x)
> 1 ≥ ϕ(t− x)

ϕ(−x)
, ∀x ≤ t

2
.

Thus, (44) is proven for x ≤ t
2
.

Next, we focus on the case when x ≥ t. Since all terms in (43) are positive, we have

to show [
Φ(t− x)

ϕ(t− x)

]2

>

[
Φ(−x)

ϕ(−x)

]2

.

Written explicitly, we have

Φ(−x)2 =
1

2π

∫ −x
−∞

∫ −x
−∞

e−(a2+b2)/2 da db =
1

2π

∫ ∞
x

∫ ∞
x

e−(a2+b2)/2 da db =
1

π

∫ ∞
x

∫ ∞
b

e−(a2+b2)/2 da db.

Changing to polar coordinates10 where a = ρ cos θ and b = ρ sin θ, the integration

10The polar coordinates ρ(or r used in many cases) and θ(or ϕ) can be converted to the Cartesian
coordinates a and b (or x and y used in most cases) by using the trigonometric functions sine and
cosine:

a = ρ cos θ, b = ρ sin θ.

The double integral form is
da db = ρ dρ dθ.

In our case, in the integral

Φ(−x)2 =
1

π

∫ ∞
x

∫ ∞
b

e−(a
2+b2)/2 da db,
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bound is θ ∈ [0, π/4] and b = ρ sin θ ≥ x. Therefore

Φ(−x)2 =
1

π

∫ π
4

0

∫ ∞
x

sin θ

e−ρ
2/2ρ dρ dθ

=
1

π

∫ π
4

0

exp

{
− x2

2 sin2 θ

}
dθ =

1

π

∫ π
4

0

exp

{
− x2

1− cos(2θ)

}
dθ

=
1

2π

∫ π
2

0

exp

{
− x2

1− cos θ

}
dθ.

Therefore[
Φ(−x)

ϕ(−x)

]2

=

∫ π
2

0

exp

{
x2 − x2

1− cos θ

}
dθ =

∫ π
2

0

exp

{
− x2 cos θ

1− cos θ

}
dθ.

Similarly [
Φ(t− x)

ϕ(t− x)

]2

=

∫ π
2

0

exp

{
−(x− t)2 cos θ

1− cos θ

}
dθ.

Therefore[
Φ(t− x)

ϕ(t− x)

]2

−
[

Φ(−x)

ϕ(−x)

]2

=

∫ π
2

0

[
exp

{
−(x− t)2 cos θ

1− cos θ

}
− exp

{
− x2 cos θ

1− cos θ

}]
dθ > 0,

(45)

both a and b are nonnegative, and so we can take θ to be arctan(y/x) which takes value in [0, π/2].
Our integration bound is x ≤ b ≤ a, which means

x ≤ ρ sin θ ≤ ρ cos θ.

The first inequality means
ρ ≥ x

sin θ
,

and the second means(on [0, π/2])

tan θ ≤ 1⇒ 0 ≤ θ ≤ π

4
.

Using the fact that ρ2 = a2 + b2, we obtain

Φ(−x)2 =
1

π

∫ ∞
x

∫ ∞
b

e−(a
2+b2)/2 da db. =

1

π

∫ π
4

0

∫ ∞
x

sin θ

e−ρ
2/2ρ dρ dθ.

The remainder is straightforward integration.
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where in the last step we have used the fact that x2 > (x− t)2 ≥ 0, so that

−(x− t)2 cos θ

1− cos θ
> − x2 cos θ

1− cos θ
, ∀θ ∈ (0,

π

2
).

which establishes the inequality in (45). We have shown that h(x) > 0 ∀x ≥ t.

Next we prove (44) for x ∈ (t/2, t). On this interval, we have

h′(x) = −Φ(t−x)ϕ′(−x)+Φ(−x)ϕ′(t−x) = −xΦ(t−x)ϕ(−x)+(x−t)Φ(−x)ϕ(t−x) < 0.

Since h(t) > 0 as shown above, ∀x ∈ (t/2, t), h(x) > 0. We have proven (44) on the

whole real axis.

Proof of Corollary 3
Using (39) and (41), we can also rewrite (19) as

d

dσ
AR(σ) = ϕ

(X(σ)

σ

)
+
(

1− Φ
(X(σ)

σ

)) [
ϕ
(
X(σ)−ē

σ

)
− ϕ

(
X(σ)
σ

)]
−
(
1− Φ

(
X(σ)−ē

σ

))
+
(
1− Φ

(
X(σ)
σ

))

= ϕ
(X(σ)

σ

)
−

1− Φ
(
X(σ)
σ

)
Φ
(
X(σ)
σ

)
− Φ

(
X(σ)−ē

σ

)[ϕ(X(σ)− ē
σ

)
− ϕ

(X(σ)

σ

)]
. (46)

This expression is strictly positive if and only if

ϕ
(
X(σ)−ē

σ

)
− ϕ

(
X(σ)
σ

)
ϕ
(
X(σ)
σ

) <
Φ
(
X(σ)
σ

)
− Φ

(
X(σ)−ē

σ

)
1− Φ

(
X(σ)
σ

) .

Define

f(X) ≡
(
ϕ
(X − ē

σ

)
−ϕ
(X
σ

))(
1−Φ

(X
σ

))
and g(X) ≡

(
Φ
(X
σ

)
−Φ
(X − ē

σ

))
ϕ
(X
σ

)
.

(47)

We need to show that

lim
X→∞

g(X)− f(X) ≤ 0. (48)

First, if two continuous functions intersect at least twice, then the difference be-

tween their first derivatives at the intersection points alternate signs. Thus, if the
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difference between the first derivatives of two continuous functions at their intersection

point(s) always has the same sign, then these two functions only intersect once, i.e.,

the intersection point is unique. We denote by X0 any X such that f(X) = g(X).

That is,
ϕ
(
X0−ē
σ

)
− ϕ

(
X0

σ

)
ϕ
(
X0

σ

) =
Φ
(
X0

σ

)
− Φ

(
X0−ē
σ

)
1− Φ

(
X0

σ

) . (49)

Equivalently,(
ϕ
(X0 − ē

σ

)
− ϕ

(X0

σ

))(
1− Φ

(X0

σ

))
= ϕ

(X0

σ

)(
Φ
(X0

σ

)
− Φ

(X0 − ē
σ

))
. (50)

We now compare the first derivatives of the LHS and RHS of (19), as derived in (53)

and (54), respectively. At any given X, (53) is larger than (54) if and only if(
− X − ē

σ
ϕ
(X − ē

σ

)
+
X

σ
ϕ
(X
σ

))(
1−Φ

(X
σ

))
> −X

σ
ϕ
(X
σ

)(
Φ
(X
σ

)
−Φ

(X − ē
σ

))
.

(51)

At X = X0, (53) is larger than (54) if and only if

ϕ
(
X−ē
σ

)
− ϕ

(
X
σ

)
ϕ
(
X
σ

) − ē

X

ϕ
(
X−ē
σ

)
ϕ
(
X
σ

) <
Φ
(
X
σ

)
− Φ

(
X−ē
σ

)
1− Φ

(
X
σ

) (52)

Since ē
X

ϕ
(
X−ē
σ

)
ϕ
(
X
σ

) > 0 for any X > 0, and because of (49), we know that (53) > (54) at

any X. We have shown that the first derivative of the LHS of (50) is always larger than

the first derivative of the RHS of (50) at a given X that satisfies (49), which implies

that the function on the LHS of (50) and the one on the RHS intersect only once, so

that X0 is unique.

Second, the first derivative of f(X) with respect to X
σ
is

(
ϕ′
(X − ē

σ

)
− ϕ′

(X
σ

))(
1− Φ

(X
σ

))
−
(
ϕ
(X − ē

σ

)
− ϕ

(X
σ

))
ϕ
(X
σ

)
=
(
− X − ē

σ
ϕ
(X − ē

σ

)
+
X

σ
ϕ
(X
σ

))(
1− Φ

(X
σ

))
−
(
ϕ
(X − ē

σ

)
− ϕ

(X
σ

))
ϕ
(X
σ

)
.

(53)
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The first derivative of g(X) with respect to X
σ
is

ϕ′
(X
σ

)(
Φ
(X
σ

)
− Φ

(X − ē
σ

))
+ ϕ

(X
σ

)(
ϕ
(X
σ

)
− ϕ

(X − ē
σ

))
= −X

σ
ϕ
(X
σ

)(
Φ
(X
σ

)
− Φ

(X − ē
σ

))
+ ϕ

(X
σ

)(
ϕ
(X
σ

)
− ϕ

(X − ē
σ

))
. (54)

Using (53) and (54), we can write

g′(X)− f ′(X) =
(
− g(X) + f(X)

)X
σ
− ē

σ
ϕ
(X − ē

σ

)(
1− Φ

(X
σ

))
. (55)

We first show by contradiction that limX→∞ g(X) − f(X) < 0. Because of the

asymptotic properties of the normal distribution’s p.d.f. and c.d.f., (55) implies that

lim
X→∞

g′(X)− f ′(X) =
(
− g(X) + f(X)

)X
σ
. (56)

Suppose that limX→∞ g(X)− f(X) < 0. Using (56), this implies that

lim
X→∞

g′(X)− f ′(X) =∞, (57)

which is inconsistent with limX→∞ g(X)− f(X) < 0.

In the remainder of the proof, we take as given limX→∞ g(X) − f(X) ≥ 0. For

X > 0,

g(X)− f(X) = g(0)− f(0) +

∫ X

0

(
g′(a)− f ′(a)

)
da. (58)

Using (55),

g(X)− f(X) = g(0)− f(0) +

∫ X

0

((
− g(a) + f(a)

)a
σ
− ē

σ
ϕ
(a− ē

σ

)(
1−Φ

(a
σ

)))
da.

(59)

In addition, with limX→∞ g(X) − f(X) ≥ 0 in the case under consideration, the fact

that limX→−∞ g(X) − f(X) > 0 (since f is positive if and only if X > X̂, while g is

positive for any X), and the fact that the functions f and g intersect at most once (as

proven above) imply that g(X)− f(X) ≥ 0 for any X. This result and (55) imply that
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g′(X)− f ′(X) is negative for any X > 0, so that, for any given X > 0,

arg max
a∈[0,X]

{−g(X) + f(X)} = X. (60)

Using this result and (59), we have:

g(X)−f(X) < g(0)−f(0)+
(
−g(X)+f(X)

)X
σ
−
∫ X

0

ē

σ
ϕ
(a− ē

σ

)(
1−Φ

(a
σ

))
da (61)

Since the last term on the RHS of (61) is negative, we obtain

g(X)− f(X) <
g(0)− f(0)

1 + X
σ

. (62)

Then, for finite g(0)− f(0) and finite σ,

lim
X→∞

g(0)− f(0)

1 + X
σ

= 0. (63)

It follows from (62) that

lim
X→∞

g(X)− f(X) = 0. (64)

Then (64) implies that

lim
X→∞

dAR(σ)

dσ
= 0. (65)

In addition, (39) implies that

lim
X→∞

∂AR(σ)

∂σ
= 0. (66)

Using (39) and (46) gives

lim
X→∞

dAR(σ)
dσ

∂AR(σ)
∂σ

= lim
X→∞

(
1−

1− Φ
(
X(σ)
σ

)
Φ
(
X(σ)
σ

)
− Φ

(
X(σ)−ē

σ

) ϕ
(
X(σ)−ē

σ

)
− ϕ

(
X(σ)
σ

)
ϕ
(
X(σ)
σ

) )
= 0, (67)

where the last equality arises from (64).
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As in the proof of Lemma 1, the incentive constraint for a given X is∫ ∞
X

(s−X)ψ(s|ē)ds−
∫ ∞
X

(s−X)ψ(s|0)ds = C.

As X →∞, this equation is satisfied if and only if C → 0. Applying this result to (65)

and (67) yields (23).

Proof of Corollary 4
Proposition 3 states that the principal optimally sets δ = 1 for X > X̄. In addition,

Corollary 1 states that the optimal X is strictly decreasing in C. Define C̄ as the cost

of effort associated with X̄. It follows that the principal optimally sets δ = 1 for C < C̄.
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