Lucky Factors

Campbell R. Harvey
Duke University, NBER and Man Group plc
Credits

Joint work with

Yan Liu
Texas A&M University

Based on our joint work:

- “... and the Cross-section of Expected Returns”

- “Backtesting”
 http://ssrn.com/abstract=2345489 [1st Prize, INQUIRE Europe/UK]

 http://ssrn.com/abstract=2474755

- “Lucky Factors”
 http://ssrn.com/abstract=2528780

- “A test of the incremental efficiency of a given portfolio”
Evolutionary Foundations

Rustling sound in the grass
Evolutionary Foundations

Rustling sound in the grass

Type I error
Evolutionary Foundations

Type II error
In examples, cost of Type II error is large – potentially death.
Evolutionary Foundations

- High Type I error (low Type II error) animals survive
- This preference is passed on to the next generation
- This is the case for an evolutionary predisposition for allowing high Type I errors
Pigeons put in cage. Food delivered at regular intervals – feeding time has nothing to do with behavior of birds.
Results

- Skinner found that birds associated their behavior with food delivery
- One bird would turn counter-clockwise
- Another bird would tilt its head back
Evolutionary Foundations

Results

- A good example of overfitting – you think there is pattern but there isn’t
- Skinner’s paper called:
 ‘Superstition’ in the Pigeon, JEP (1947)
- But this applies not just to pigeons or gazelles...
Evolutionary Foundations

Klaus Conrad 1958

Coins the term Apophänie. This is where you see a pattern and make an incorrect inference. He associated this with psychosis and schizophrenia.
Evolutionary Foundations
Evolutionary Foundations
Evolutionary Foundations
Evolutionary Foundations

• Apophany is a Type I error (i.e. false insight)
• Epiphany is the opposite (i.e. true insight)
 • Apophany may be interpreted as overfitting

“....nothing is so alien to the human mind as the idea of randomness.” --John Cohen

Evolutionary Foundations

• Sagan (1995):
 • As soon as the infant can see, it recognizes faces, and we now know that this skill is hardwired in our brains.

Evolutionary Foundations

• Sagan (1995):
 • Those infants who a million years ago were unable to recognize a face smiled back less, were less likely to win the hearts of their parents and less likely to prosper.
Evolutionary Foundations

• Sagan (1995):
 • Those infants who a million years ago were unable to recognize a face smiled back less, were less likely to win the hearts of their parents and less likely to prosper.
Evolutionary Foundations

• Sagan (1995):
 • Those infants who a million years ago were unable to recognize a face smiled back less, were less likely to win the hearts of their parents and less likely to prosper.
Evolutionary Foundations

• Sagan (1995):
 • Those infants who a million years ago were unable to recognize a face smiled back less, were less likely to win the hearts of their parents and less likely to prosper.
The Setting

Performance of trading strategy is very impressive.
- SR=1
- Consistent
- Drawdowns acceptable

Source: AHL Research
The Setting

Source: AHL Research
The Setting

Source: AHL Research

200 random time-series
mean=0; volatility=15%
The Setting

The good news:

- Harvey and Liu (2014) suggest a multiple testing correction which provides a haircut for the Sharpe Ratios. No strategy would be declared “significant”

- Lopez De Prado et al. (2014) uses an alternative approach, the “probability of overfitting” which in this example is a large 0.26

- Both methods deal with the data mining problem

Source: AHL Research

Campbell R. Harvey 2015
The Setting

The good news:

- Harvey and Liu (2014) Haircut Sharpe ratio takes the number of tests into account as well as the size of the sample.
The Setting

The good news:

- Haircut Sharpe Ratio:
 - Sample size

Haircut Sharpe Ratio:

- Sample size

Inputs:
- Frequency = Monthly
- Number of Observations = 120
- Initial Sharpe Ratio = 1.00
- Sharpe Ratio Annualized = Yes
- Autocorrelation = 0.100
- Annualized Sharpe Ratio = 0.465
- Assumed Average Correlation = 0.100
- Assumed Average Correlation = 0.400

Campbell R. Harvey 2015

<table>
<thead>
<tr>
<th>Haircut Sharpe Ratio</th>
<th>Adjusted P-value</th>
<th>BHY Adjustment</th>
<th>Holm Adjustment</th>
<th>Bonferroni Adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.348</td>
<td>0.169</td>
<td>0.409</td>
<td>0.438</td>
<td>0.293</td>
</tr>
<tr>
<td>0.232</td>
<td>0.465</td>
<td>0.262</td>
<td>0.329</td>
<td>0.293</td>
</tr>
</tbody>
</table>

The Setting

The good news:

- Haircut Sharpe Ratio:
 - Sample size
 - Autocorrelation

Inputs:
- Frequency = Monthly;
- Number of Observations = 120;
- Initial Sharpe Ratio = 1.000;
- Sharpe Ratio Annualized = Yes;
- Autocorrelation = 0.100;
- A/C Corrected Annualized Sharpe Ratio = 0.912;
- Assumed Number of Tests = 100;
- Assumed Average Correlation = 0.400.

Outputs:
- Bonferroni Adjustment:
 - Adjusted P-value = 0.465;
 - Haircut Sharpe Ratio = 0.232;
 - Percentage Haircut = 74.6%.

- Holm Adjustment:
 - Adjusted P-value = 0.409;
 - Haircut Sharpe Ratio = 0.262;
 - Percentage Haircut = 71.3%.

- BHY Adjustment:
 - Adjusted P-value = 0.169;
 - Haircut Sharpe Ratio = 0.438;
 - Percentage Haircut = 52.0%.

- Average Adjustment:
 - Adjusted P-value = 0.348;
 - Haircut Sharpe Ratio = 0.298;
 - Percentage Haircut = 67.3%.
The Setting

The good news:

- Haircut Sharpe Ratio:
 - Sample size
 - Autocorrelation
 - The number of tests (data mining)

Inputs:
- Frequency = Monthly;
- Number of Observations = 120;
- Initial Sharpe Ratio = 1.000;
- Sharpe Ratio Annualized = Yes;
- Autocorrelation = 0.100;
- A/C Corrected Annualized Sharpe Ratio = 0.912
- Assumed Number of Tests = 100;
- Assumed Average Correlation = 0.400.

Outputs:
- Bonferroni Adjustment:
 - Adjusted P-value = 0.465;
 - Haircut Sharpe Ratio = 0.232;
 - Percentage Haircut = 74.6%.

- Holm Adjustment:
 - Adjusted P-value = 0.409;
 - Haircut Sharpe Ratio = 0.262;
 - Percentage Haircut = 71.3%.

- BHY Adjustment:
 - Adjusted P-value = 0.169;
 - Haircut Sharpe Ratio = 0.438;
 - Percentage Haircut = 52.0%.

- Average Adjustment:
 - Adjusted P-value = 0.348;
 - Haircut Sharpe Ratio = 0.298;
 - Percentage Haircut = 67.3%.
The Setting

The good news:

- Haircut Sharpe Ratio:
 - Sample size
 - Autocorrelation
 - The number of tests (data mining)
 - Correlation of tests
The Setting

The good news:

- Haircut Sharpe Ratio:
 - Sample size
 - Autocorrelation
 - The number of tests (data mining)
 - Correlation of tests

Haircut Sharpe Ratio applies to the Maximal Sharpe Ratio
The Setting

Annual Sharpe – 2015 CQA Competition
(28 Teams/ 5 months of daily quant equity long-short)
Haircut Annual Sharpe – 2015 CQA Competition
The Setting

The bad news:

Equal weighting of 10 best strategies produces a t-stat=4.5!

200 random time-series mean=0; volatility=15%

Source: AHL Research

Campbell R. Harvey 2015
A Common Thread

A common thread connecting many important problems in finance

- Not just the in-house evaluation of trading strategies.
- There are thousands of fund managers. How to distinguish skill from luck?
- Dozens of variables have been found to forecast stock returns. Which ones are true?
- More than 300 factors have been published and thousands have been tried to explain the cross-section of expected returns. Which ones are true?
A Common Thread

Even more in the practice of finance. 400 factors!

The Alpha Factor Library is the industry’s most comprehensive source of value-added stock signals and multi-factor stock-selection models. Available as a data feed and accessible through the S&P Capital IQ platform, the factor library contains over 400 signals that can be used to jump start new investment products or dramatically improve existing ones.

Key Advantages:

- Access over 450 quantitative stock selection signals spanning seminal academic literature and the latest practitioner expertise

Campbell R. Harvey 2015
The Question

- The common thread is *multiple testing* or *data mining*
- Our research question:
 How do we adjust standard models for data mining and how do we handle multiple factors?
A Motivating Example

Suppose we have 100 “X” variables to explain a single “Y” variable. The problems we face are:

I. Which regression model do we use?
 • E.g., for factor tests, panel regression vs. Fama-MacBeth

II. Are any of the 100 variables significant?
 • Due to data mining, significance at the conventional level is not enough
 • 99% chance something will appear “significant” by chance
 • Need to take into account dependency among the Xs and between X and Y
A Motivating Example

III. Suppose we find one explanatory variable to be significant. How do we find the next?
 • The next needs to explain Y in addition to what the first one can explain
 • There is again multiple testing since 99 variables have been tried

IV. When do we stop? How many factors?
Our Approach

We propose a new framework that addresses multiple testing in regression models. Features of our framework include:

- It takes multiple testing into account
 - Our method allows for both time-series and cross-sectional dependence
- It sequentially identifies the group of “true” factors
- The general idea applies to different regression models
 - In the paper, we show how our model applies to predictive regression, panel regression, and the Fama-MacBeth procedure
Related Literature

- FSW (1997) use simulations to show how regression R-squares are inflated when a few variables are selected from a large set of variables
 - We bootstrap from the real data (rather than simulate artificial data)
 - Our method accommodates a wide range of test statistics

- White (2000) suggests the use of the max statistics to adjust for data mining
 - We show how to create the max statistic within standard regression models
A Predictive Regression

Let’s return to the example of a Y variable and 100 possible X (predictor) variables. Suppose 500 observations.

- **Step 1.** Orthogonalize each of the X variables with respect to Y. Hence, a regression of Y on any X produces exactly zero R^2. This is the null hypothesis – no predictability.

- **Step 2.** Bootstrap the data, that is, the original Y and the orthogonalized Xs (produces a new data matrix 500x101)
A Predictive Regression

- **Step 3.** Run 100 regressions and save the max statistic of your choice (could be R^2, t-statistic, F-statistic, MAE, etc.), e.g. save the highest t-statistic from the 100 regressions. Note, in the unbootstrapped data, every t-statistic is exactly zero.

- **Step 4.** Repeat steps 2 and 3 10,000 times.

- **Step 5.** Now that we have the empirical distribution of the max t-statistic under the null of no predictability, compare to the max t-statistic in real data.
A Predictive Regression

- **Step 5a.** If the max t-stat in the real data fails to exceed the threshold (95th percentile of the null distribution), stop (no variable is significant).

- **Step 5b.** If the max t-stat in the real data exceeds the threshold, declare the variable, say, X_7, “true”

- **Step 6.** Orthogonalize Y with respect to X_7 and call it Y^e. This new variable is the part of Y that cannot be explained by X_7.

- **Step 7.** Reorthogonalize the remaining X variables (99 of them) with respect to Y^e.
A Predictive Regression

- **Step 8.** Repeat Steps 3-7 (except there are 99 regressions to run because one variable is declared true).

- **Step 9.** Continue until the max t-statistic in the data fails to exceed the max from the bootstrap.
Advantages

- Addresses data mining directly
- Allows for cross-correlation of the X-variables because we are bootstrapping rows of data
- Allows for non-normality in the data (no distributional assumptions imposed – we are resampling the original data)
- Potentially allows for time-dependence in the data by changing to a block bootstrap.
- Answers the questions:
 - How many factors?
 - Which ones were just lucky?
Fund Evaluation

- Our technique similar (but has important differences) with Fama and French (2010)
- In FF 2010, each mutual fund is stripped of its “alpha”. So in the null (of no skill), each fund has exactly zero alpha and zero t-statistic.
- FF 2010 then bootstrap the null (and this has all of the desirable properties, i.e. preserves cross-correlation, non-normalities).
Fund Evaluation

- We depart from FF 2010 in the following way. Once, we declare a fund “true”, we replace it in the null data with its actual data.

- To be clear, suppose we had 5,000 funds. In the null, each fund has exactly zero alpha. We do the max and find Fund 7 has skill. The new null distribution replaces the “de-alphaed” Fund 7 with the Fund 7 data with alpha. That is, 4,999 funds will have a zero alpha and one, Fund 7, has alpha>0.

- We repeat the bootstrap
Fund Evaluation

Null = No outperformers or underperformers

No one outperforms

Potentially large number of underperformers
1% “True” underperformers added back to null

Still there are more that appear to underperform

Fund Evaluation

Panel A: 1% Underperforming

Percentiles of Mutual Fund Performance
Fund Evaluation

8% “True” underperformers added back to null

Cross-over point: Simulated and real data
Factor Evaluation

- Easy to apply to standard factor models
- Think of each factor as a fund return
- Return of the S&P Capital IQ data* (thanks to Kirk Wang, Paul Fruin and Dave Pope). Application of Harvey-Liu done yesterday!
- 293 factors examined

*Note: Data sector-neutralized, equal weighted, Q1-Q5 spread
Factor Evaluation

126 factors pass typical threshold of t-stat > 2
54 factors pass modified threshold of t-stat > 3

Large number of potentially “significant” factors
Factor Evaluation

Only 15 declared “significant factors”
Factor Evaluation

Redo with Large Caps.

Nothing significant.
Factor Evaluation

Redo with Mid Caps.

Nothing significant.
Factor Evaluation

- What about published factors?
- Harvey, Liu and Zhu (2015) consider one factor at a time
- They do not address a “portfolio” of factors
- 13 widely cited factors:
 - MKT, SMB, HML
 - MOM
 - SKEW
 - PSL
 - ROE, IA
 - QMJ
 - BAB
 - GP
 - CMA, RMW

316 factors in 2012 if working papers are included

T-ratio = 1.96 (5%)
Factor Evaluation

- Use panel regression approach
- Illustrative example only
- One weakness is you need to specify a set of portfolios
- Choice of portfolio formation will influence the factor selection
- Illustration uses FF Size/Book to Market sorted 25 portfolios
Factor Evaluation

Panel B.1: Factor Returns

<table>
<thead>
<tr>
<th></th>
<th>mkt</th>
<th>smb</th>
<th>hml</th>
<th>mom</th>
<th>skew</th>
<th>psl</th>
<th>roe</th>
<th>ia</th>
<th>qmj</th>
<th>bab</th>
<th>gp</th>
<th>cma</th>
<th>rmw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.057</td>
<td>0.027</td>
<td>0.049</td>
<td>0.086</td>
<td>0.032</td>
<td>0.056</td>
<td>0.070</td>
<td>0.054</td>
<td>0.046</td>
<td>0.103</td>
<td>0.037</td>
<td>0.045</td>
<td>0.035</td>
</tr>
<tr>
<td>t-stat</td>
<td>2.28</td>
<td>1.63</td>
<td>2.96</td>
<td>3.51</td>
<td>2.34</td>
<td>2.88</td>
<td>4.89</td>
<td>5.27</td>
<td>3.36</td>
<td>5.49</td>
<td>2.88</td>
<td>4.22</td>
<td>2.88</td>
</tr>
</tbody>
</table>
Factor Evaluation

Panel B.2: Factor Correlation Matrix

<table>
<thead>
<tr>
<th></th>
<th>mkt</th>
<th>smb</th>
<th>hml</th>
<th>mom</th>
<th>skew</th>
<th>psl</th>
<th>roe</th>
<th>ia</th>
<th>qmj</th>
<th>bab</th>
<th>gp</th>
<th>cma</th>
<th>rmw</th>
</tr>
</thead>
<tbody>
<tr>
<td>mkt</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>smb</td>
<td>0.25</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>hml</td>
<td>-0.32</td>
<td>-0.11</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>mom</td>
<td>-0.14</td>
<td>-0.03</td>
<td>-0.15</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>skew</td>
<td>-0.05</td>
<td>-0.00</td>
<td>0.24</td>
<td>0.04</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>psl</td>
<td>-0.03</td>
<td>-0.03</td>
<td>0.04</td>
<td>-0.04</td>
<td>0.10</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>roe</td>
<td>-0.18</td>
<td>-0.38</td>
<td>-0.09</td>
<td>0.50</td>
<td>0.20</td>
<td>-0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ia</td>
<td>-0.37</td>
<td>-0.15</td>
<td>0.69</td>
<td>0.04</td>
<td>0.20</td>
<td>0.03</td>
<td>0.06</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>qmj</td>
<td>-0.52</td>
<td>-0.51</td>
<td>0.02</td>
<td>0.25</td>
<td>0.16</td>
<td>0.02</td>
<td>0.69</td>
<td>0.13</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bab</td>
<td>-0.10</td>
<td>-0.01</td>
<td>0.41</td>
<td>0.18</td>
<td>0.25</td>
<td>0.06</td>
<td>0.27</td>
<td>0.34</td>
<td>0.19</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gp</td>
<td>0.07</td>
<td>0.02</td>
<td>-0.31</td>
<td>-0.01</td>
<td>0.01</td>
<td>-0.06</td>
<td>0.32</td>
<td>-0.22</td>
<td>0.48</td>
<td>-0.09</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cma</td>
<td>-0.40</td>
<td>-0.05</td>
<td>0.70</td>
<td>0.02</td>
<td>0.09</td>
<td>0.04</td>
<td>-0.08</td>
<td>0.90</td>
<td>0.05</td>
<td>0.31</td>
<td>-0.29</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>rmw</td>
<td>-0.23</td>
<td>-0.39</td>
<td>0.15</td>
<td>0.09</td>
<td>0.29</td>
<td>0.02</td>
<td>0.67</td>
<td>0.09</td>
<td>0.78</td>
<td>0.29</td>
<td>0.47</td>
<td>-0.03</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Factor Evaluation

- Evaluation metrics
 - m_{1a} = median absolute intercept
 - m_1 = mean absolute intercept
 - m_2 = m_1/average absolute value of demeaned portfolio return
 - m_3 = mean squared intercept/average squared value of demeaned portfolio returns
 - GRS (not used)
Factor Evaluation

Panel A: Baseline = No Factor

<table>
<thead>
<tr>
<th></th>
<th>$m_1^a (%)$</th>
<th>$m_1^b (%)$</th>
<th>m_2</th>
<th>m_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mkt</td>
<td>0.285</td>
<td>0.277</td>
<td>1.540</td>
<td>1.750</td>
</tr>
<tr>
<td>smb</td>
<td>0.539</td>
<td>0.513</td>
<td>2.851</td>
<td>5.032</td>
</tr>
<tr>
<td>hml</td>
<td>0.835</td>
<td>0.817</td>
<td>4.541</td>
<td>12.933</td>
</tr>
<tr>
<td>mom</td>
<td>0.873</td>
<td>0.832</td>
<td>4.626</td>
<td>13.965</td>
</tr>
<tr>
<td>skew</td>
<td>0.716</td>
<td>0.688</td>
<td>3.822</td>
<td>9.087</td>
</tr>
<tr>
<td>psl</td>
<td>0.726</td>
<td>0.699</td>
<td>3.887</td>
<td>9.548</td>
</tr>
<tr>
<td>roe</td>
<td>0.990</td>
<td>1.011</td>
<td>5.623</td>
<td>21.191</td>
</tr>
<tr>
<td>ia</td>
<td>1.113</td>
<td>1.034</td>
<td>5.750</td>
<td>21.364</td>
</tr>
<tr>
<td>qmj</td>
<td>1.174</td>
<td>1.172</td>
<td>6.516</td>
<td>28.427</td>
</tr>
<tr>
<td>bab</td>
<td>0.715</td>
<td>0.725</td>
<td>4.029</td>
<td>9.801</td>
</tr>
<tr>
<td>gp</td>
<td>0.692</td>
<td>0.663</td>
<td>3.688</td>
<td>8.816</td>
</tr>
<tr>
<td>cma</td>
<td>0.996</td>
<td>0.956</td>
<td>5.318</td>
<td>17.915</td>
</tr>
<tr>
<td>rmw</td>
<td>0.896</td>
<td>0.881</td>
<td>4.900</td>
<td>15.647</td>
</tr>
<tr>
<td>Min</td>
<td>0.285</td>
<td>0.277</td>
<td>1.540</td>
<td>1.750</td>
</tr>
<tr>
<td>Bootstrap Median of min</td>
<td>0.598</td>
<td>0.587</td>
<td>3.037</td>
<td>5.910</td>
</tr>
<tr>
<td>p-value</td>
<td>0.039</td>
<td>0.025</td>
<td>0.052</td>
<td>0.100</td>
</tr>
</tbody>
</table>

Select market factor first.
Factor Evaluation

Panel B: Baseline = mkt

<table>
<thead>
<tr>
<th></th>
<th>smb</th>
<th>hml</th>
<th>mom</th>
<th>skew</th>
<th>psl</th>
<th>roe</th>
<th>ia</th>
<th>qmj</th>
<th>bab</th>
<th>gp</th>
<th>cma</th>
<th>rnmw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real data</td>
<td>0.225</td>
<td>0.120</td>
<td>0.301</td>
<td>0.239</td>
<td>0.258</td>
<td>0.332</td>
<td>0.166</td>
<td>0.344</td>
<td>0.121</td>
<td>0.305</td>
<td>0.112</td>
<td>0.225</td>
</tr>
<tr>
<td></td>
<td>0.243</td>
<td>0.150</td>
<td>0.328</td>
<td>0.236</td>
<td>0.265</td>
<td>0.363</td>
<td>0.163</td>
<td>0.398</td>
<td>0.152</td>
<td>0.314</td>
<td>0.130</td>
<td>0.285</td>
</tr>
<tr>
<td></td>
<td>1.348</td>
<td>0.836</td>
<td>1.825</td>
<td>1.314</td>
<td>1.474</td>
<td>2.020</td>
<td>0.907</td>
<td>2.213</td>
<td>0.844</td>
<td>1.745</td>
<td>0.721</td>
<td>1.586</td>
</tr>
<tr>
<td></td>
<td>1.633</td>
<td>0.341</td>
<td>2.469</td>
<td>1.292</td>
<td>1.611</td>
<td>3.846</td>
<td>0.358</td>
<td>4.615</td>
<td>0.382</td>
<td>2.148</td>
<td>0.153</td>
<td>2.204</td>
</tr>
<tr>
<td>Min</td>
<td>0.112</td>
<td>0.130</td>
<td>0.721</td>
<td>0.153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bootstrap Median of min p-value</td>
<td>0.220</td>
<td>0.247</td>
<td>1.262</td>
<td>1.268</td>
<td>0.022</td>
<td>0.002</td>
<td>0.001</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Next cma chosen (hml, bab close!)
Factor Evaluation

- This implementation assumes a single panel estimation
- Harvey and Liu (2015) “Lucky Factors” shows how to implement this in Fama-MacBeth regressions (cross-sectional regressions estimated at each point in time)
Factor Evaluation

- But.... the technique is only as good as the inputs
- Different results are obtained for different portfolio sorts
Factor Evaluation Using Individual Stocks

- Logic of using portfolios:
 - Reduces noise
 - Increases power (create a large range of expected returns)
 - Manageable covariance matrix
Factor Evaluation Using Individual Stocks

 - Yes, individual stocks noisier
 - No arbitrary portfolio sorts – input data is the same for every test
 - Avoid estimating the covariance matrix and rely on measures linked to average pricing errors (intercepts)
 - We can choose among a wide range of performance metrics

II.A.8

• “Recognize that any frequentist statistical test has a random chance of indicating significance when it is not really present. Running multiple tests on the same data set at the same stage of an analysis increases the chance of obtaining at least one invalid result. Selecting the one "significant" result from a multiplicity of parallel tests poses a grave risk of an incorrect conclusion. Failure to disclose the full extent of tests and their results in such a case would be highly misleading.”
Conclusions

▪ “More than half of the reported empirical findings in financial economics are likely false.”

 Harvey, Liu & Zhu (2015) “…and the Cross-Section of Expected Returns”

▪ New guidelines to reduce the Type I errors. P-values must be adjusted.

▪ Applies not just in finance but to any situation where many “X” variables are proposed to explain “Y”
Applications: Identifying the tradeoff of Type 1 & Type 2 errors

The investment manager can make two types of errors:

1. Based on an acceptable backtest, a strategy is implemented in a portfolio but it turns out to be a false strategy. The alternative was to keep the existing portfolio.

2. Based on an unacceptable backtest, a strategy is not implemented but it turns out that if implemented this would have been a true strategy. The manager’s decision was to keep the existing portfolio.
Applications: Identifying the tradeoff of Type 1 & Type 2 errors

It is possible to run a psychometric test

- Q: Which is the bigger mistake?

A. Investing in a new strategy which promised a 10% return but delivered 0%

B. Missing a strategy you thought had 0% return but would have delivered 10%
Applications:
Identifying the tradeoff of Type 1 & Type 2 errors

Suppose A is chosen, change B

- Which is the bigger mistake?

A. Investing in a new strategy which promised a 10% return but delivered 0%

B. Missing a strategy you thought had 0% return but would have delivered 20%
Applications:
Identifying the tradeoff of Type 1 & Type 2 errors

Keep on doing this until the respondent switches.

- This exactly delivers the trade off between Type I error and Type II errors
- Allows for the alignment between portfolio manager and the investment company senior management – as well as the company and the investor!